Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có :
\(9^{1945}-2^{1930}=\left(9^5\right)^{389}-\left(2^{10}\right)^{193}=\left(.....9\right)-\left(.....4\right)=\left(............5\right)⋮5\)
\(\Leftrightarrowđpcm\)
A = ( 7+7^2) ( + (7^3+7^2) +...+ ( 7^2013 + 7^2014)
A = 7. (7+7^2) + 7^3.( 7+7^2) +...+ 7^2013 +( 7+7^2)
= 7.8 + 7^3 .8 + ... + 7^2013 .8
Chưa chắc đúng :)
Ta có A = \(1+5+5^2+...+5^{2015}\)
=> 5A = \(5+5^2+5^3+...+5^{2016}\)
=> 5A - A = \(5+5^2+5^3+...+5^{2016}-1-5-5^2-...-5^{2015}\)
=> 4A = \(5^{2016}-1\)
=> A = \(\left(5^{2016}-1\right):4\)
=> A chia hết cho 31
Bị lừa chỏng vó kìa. Bạn cho **** rồi chắc chắn không ai làm đâu. Để mik giúp bạn vậy
B=4^2004+4^2003+...+4^2+4+1
4B = 4^2005+4^2004+...+4^2+4
=> 4B-B = (4^2005+4^2004+...4^3+4^2+4) - (4^2004+4^2003+...+4^2+4+1)
=> 3B = 4^2005 - 1 => B = (4^2005 - 1)/3
=> A = 75 (4^2005 - 1)/3 +25
= 25 (4^2005 -1) +25
= 25 x 4 ^ 2005
= 25 x 4 x 4 ^ 2004 = 100 x4 ^ 2004 chia hết cho 100 ( Vì 100 chia hết cho 100 )