Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n = 2.3.5.7.11.13. ...
Dễ thấy n chia hết cho 2 và không chia hết cho 4.
-) Giả sử n+1 = a2, ta sẽ chứng minh điều này là không thể.
Vì n chẵn nên n+1 lẻ mà n+1= a2 nên a lẻ, giả sử a=2k+1, khi đó:
n+1=(2k+1)2 <=>n+1=4k2+4k+1 <=>n=4k2+4 chia hết cho 4, điều này không thể vì n không chi hết cho 4.
Vậy n+1 không chính phương.
-) Dễ thấy n chia hết cho 3 nên n-1 chia cho 3 sẽ dư 2 tức n=3k+2, điều này vô lý vì số chính phương có dạng 3k hoặc 3k+1.
Vậy n-1 không chính phương
(Hình như bài này của lớp 8 nha)
Bạn ơi bài này phải cho thêm điều kiện n thuộc Z
Đặt n^2+2006 = k^2 ( k thuộc N sao)
<=> -2006 = n^2-k^2 = (n-k).(n+k)
<=> n-k thuộc ước của -2006 ( vì n thuộc Z , k thuộc N sao nên n-k và n+k đểu thuộc Z)
Mà k thuộc N sao nên n-k < n+k
Từ đó, bạn tự giải bài toán nhưng nhớ kết hợp cả điều kiện n-k<n+k
xét chữ số tận cùng là ra luôn