Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Chứng minh (a + b)2 = (a – b)2 + 4ab
Ta có:
VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab
= a2 + (4ab – 2ab) + b2
= a2 + 2ab + b2
= (a + b)2 = VT (đpcm)
+ Chứng minh (a – b)2 = (a + b)2 – 4ab
Ta có:
VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab
= a2 + (2ab – 4ab) + b2
= a2 – 2ab + b2
= (a – b)2 = VT (đpcm)
+ Áp dụng, tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.
theo đề a chia 4 dư 2 nên a có dạng 4k+2
b chia 4 dư 1 nên b có dạng 4n+1 (với k và n là các số thuộc N)
ta có a.b= (4k+2)(4n+1)=16kn+8n+4k+2= 4(4kn+2n+k)+2
vì 4 chia hết cho 4 nên 4.(4kn+2n+k) chia hết cho 4. suy ra 4(4kn+2n+k)+2 chia 4 dư 2 hay a.b chia 4 dư 2
a) Ta có \(a\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\Rightarrow2ab+a+b=a+b+ab+1\)
=> ab=1
b) Ta có \(2\left(a+1\right)\left(b+1\right)=\left(a+b\right)\left(a+b+2\right)\Leftrightarrow2ab+2a+2b+2=a^2+ab+2a+b^2+ab+2b\)
=> a^2+b^2=2
^_^
Ta có: a = 3k + 1
b = 3k + 2 (k thuộc N)
=> a.b = (3k + 1)(3k + 2) = 9k2 + 9k + 2 là 1 số chia 3 dư 2 => ĐPCM
ta có : a = 3x + 1
b = 3x + 2 (x thuộc N) (N = số tự nhiên)
=> axb = (3x + 1) (3x + 2) = 9x2 + 9x + 2 là số chia 3 dư 2 => ĐPCM
Bài 2:
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-n^2+12n-35\)
\(=12n-36⋮12\)
Vì a>2=>a=2+m, b>2=>b=2+n (m,n thuộc N*)
=>a.b=(2+m).(2+n)=2.(2+n)+m.(2+n)=4+2n+2m+mn=4+m+m+n+n+mn=(4+m+n)+(m+n+mn)=(2+m)+(2+n)+(m+n+mn)>(2+m)+(2+m)=a.b
=>ĐPCM
Vì \(a>2\)
và \(b>2\)
\(\Rightarrow a>0\)và \(b>0\)
Vì \(a>2\)và \(b>0\)
\(\Rightarrow ab>2b\)(1)
Vì \(b>2\)và \(a>0\)
\(\Rightarrow ab>2a\) (2)
Cộng vế tương ứng (1) và (2) ta có :
\(2ab>2\left(a+b\right)\)
\(\Rightarrow ab>a+b\)(đpcm)