K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Đặt a/2 = b/5 = c/7 => a=2k,b=5k,c=7k

Ta có: \(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)

14 tháng 12 2017

Đặt :

\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{7}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2k\\b=4k\\c=7k\end{matrix}\right.\) \(\left(1\right)\)

Thay \(\left(1\right)\)\(A=\dfrac{a-b+c}{a+2b-c}\) ta được :

\(A=\dfrac{2k-5k+7k}{2k+2.5k-7k}\)\(=\dfrac{4k}{5k}\) \(=\dfrac{4}{5}\)

7 tháng 1 2018

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a-b+c}{2-5+7}=\frac{a-b+c}{4}\Rightarrow a-b+c=2a\)
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a+2b-c}{2+2.5-7}=\frac{a+2b-c}{5}\Rightarrow a+2b-c=\frac{5}{2}a\)
\(\Rightarrow A=\frac{2a}{\frac{5}{2}a}=\frac{4}{5}\)

7 tháng 1 2018

đặt a/2=b/5=c/7=k => a=2k,b=5k,c=7k

Ta có: \(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)

29 tháng 10 2015

tick mk cái sau mk trả lời cho mk bít làm bài này

 

26 tháng 12 2017

a)Ta có 7x=2y

Suy ra:\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)

Và x-y=16

Áp dụng công thức của dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)=\(\dfrac{x-y}{\dfrac{1}{7}-\dfrac{1}{2}}\)=\(\dfrac{16}{\dfrac{-5}{14}}\)=\(\dfrac{-224}{5}\)

Từ \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{-224}{5}\)suy ra :x=\(\dfrac{-224}{5}\cdot\dfrac{1}{7}\)=\(-\dfrac{32}{5}\)

\(\dfrac{y}{\dfrac{1}{2}}=-\dfrac{224}{5}\)suy ra:y=\(-\dfrac{224}{5}\cdot\dfrac{1}{2}=-\dfrac{112}{5}\)

27 tháng 12 2017

c)Ta có :\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

Mà a+2b-c=-20

Suy ra:\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có:

\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}=\dfrac{a+2b-c}{2+6-4}=-\dfrac{20}{4}=-5\)

Từ \(\dfrac{a}{2}=-5,suyra:a=-5\cdot2=-10\)

\(\dfrac{b}{3}=-5,suyra:b=-5\cdot3=-15\)

\(\dfrac{c}{4}=-5,suyra:c=-5\cdot4=-20\)

Vậy a=-10,b=-15,c=-20

10 tháng 2 2017

Kiểm tra lại đề.

10 tháng 2 2017

ko sai gi het à dấu ( ) là dấu giá trị tuyệt đối nha

a) \(A=31-\sqrt{2x+7}\)

Ta có: \(-\sqrt{2x+7}\le0\forall x\)

\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)

Vậy MIN A = 31

10 tháng 8 2017

\(A=31-\sqrt{2x+7}\)

Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)

Với mọi \(x\ge-3,5\) ta có:

\(\sqrt{2x+7}\ge0\)

\(\Rightarrow A=31-\sqrt{2x+7}\le31\)

Dấu "=" xảy ra khi:

\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)

Vậy \(MAX_A=31\) khi \(x=-3,5\)

\(B=-9+\sqrt{7+x}\)

Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:

\(x\ge-7\)

Với mọi \(x\ge-7\) ta có:

\(\sqrt{7+x}\ge0\)

\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:

\(\sqrt{7+x}=0\Rightarrow x=-7\)

\(\Rightarrow MIN_B=-9\) khi \(x=-7\)

10 tháng 8 2017

a, Sửa đề: Tìm GTLN của biểu thức

\(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)

\(\Rightarrow31-\sqrt{2x+7}\le31\)

Dấu ''='' xảy ra khi :

\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)

Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5

b, Tìm GTNN của B

Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)

\(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)

Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)

Vậy \(B_{Min}=-9\) khi x = -7

p/s: Lần sau gửi đề cẩn thận hơn ||^^