
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


B1:a2+b2+c2=ab+bc+ac tương đương 2(a2+b2+c2) - 2(ab+bc+ac) =0
suy ra 2a2 +2b2 +2c2 -2ab-2bc-2ac=0
suy ra (a2 -2ab+b2) +(b2-2bc+c2)+(a2-2ac+c2)=0
suy ra (a-b)2+(b-c)2+(a-c)2=0 suy ra (a-b)2=0 tương đương a-b=0 suy ra a=b (1)
(b-c)2=0 tương đương b-c=0 suy ra b=c (2)
(a-c)2 =0 tương đương a-c=0 suy ra b=c (3)
từ (1);(2);(3)suy ra a=b=c.Mà a=b=c=9 suy ra a=b=c=3(đpcm)
bai 1 : ve trai : a2 + b2 + c2 = a.a + b.b + c.c = (a.b) + (b.c) +(c.a) = ab + bc +ca = ve phai
ma a+b+c=9 suy ra : 3+3+3=9 suy ra a ;b;c deu bang 3
vi ve trai = ve phai ma a ;b ;c =3 vay dang thuc duoc chung minh

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c

a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Leftrightarrow a=b=c=1\)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)



Áp dụng
\(\left(x+y+z\right)^3=x^3+y^3+z^3+\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz\)
Ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
=> \(2ab+2ac+2bc=0\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
KHi đó:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^3=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)-\frac{3}{abc}\)
=> \(0=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+0-\frac{3}{abc}\)
=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\)
\(\Leftrightarrow a^2+b^2+c^2-\left(ab+bc+ac\right)=3abc\)
\(\Leftrightarrow\left(a+b+c\right)^2-3\left(ab+bc+ac\right)=3abc\)
Đặt \(\left(a+b+c,ab+bc+ac,abc\right)=\left(p,q,r\right)\)
\(\Rightarrow p^2-3q=3r\)
Khi đó \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ac\right)+3abc\)
\(\Leftrightarrow a^3+b^3+c^3=p^3+3pq+3r=p\left(p^2-3q\right)+3r=3pr+3r\)
Vậy .....
Chúc bạn học tốt!

Câu hỏi của Trần Điền - Toán lớp 9 - Học toán với OnlineMath
Tham khảo câu b
\(a^2+b^2+c^2+3=2.\left(a+b+c\right)\)
\(a^2+b^2+c^2+3=2a+2b+2c\)
\(a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2x+1\right)=0\)
\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(a-1\right)^2\ge0\forall a\\\left(b-1\right)^2\ge0\forall b\\\left(c-1\right)^2\ge0\forall c\end{cases}}\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\forall a;b;c\)
Mà \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}\Rightarrow}a=b=c=1\)
đpcm
Tham khảo nhé~
Ta có: \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)
\(\Leftrightarrow a^2+b^2+c^2-2a-2b-2c+3=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)(1)
Vì \(\hept{\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}}\forall a,b,c\)\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)(2)
Từ (1) và (2) \(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\Leftrightarrow a=b=c=1\)
Vậy \(a=b=c=1\)