K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Bạn áp dụng cái này là được: \(a^3-a⋮3\)\(\forall a\in Z\)

4 tháng 10 2017

Đặt \(B=a_1+a_2+...+a_{2016}\)

\(\Rightarrow A-B=\left(a_1^3+a_2^3+...+a_{2016}^3\right)-\left(a_1+a_2+....+a_{2016}\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_{2016}^3-a_{2016}\right)\)

\(=\left(a_1-1\right)a_1\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_{2016}-1\right)a_{2016}\left(a_{2016}+1\right)⋮6\)

\(B⋮6\Rightarrow A⋮6\)

2 tháng 11 2017

Xét a1^5 - a1 = a1.(a1^4-1) = a1.(a1^2-1).(a1^2+1) = a1.(a1-1).(a1+1).(a1^2-4+5)

= a1.(a1-1).(a1+1).(a1-2).(a1+2) + 5.a1.(a1-1).(a1+1)

Ta thấy a1-2;a1-1;a1;a1+1;a1+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 , 1 số chia hết cho 3 , 1 số chia hết cho 5

=> a1.(a1-1).(a1+1).(a1-2).(a1+2) chia hết cho 30 [vì (2;3;5)=1] (1)

Lại có a1-1;a1;a1+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3

=> a1.(a1-1).(a1+1) chia hết cho 6 [vì(2;3)=1]

=>5.a1.(a1-1).(a1+1) chia hết cho 30(2)

Từ (1) và (2) => a1^5-a1 chia hết cho 30

Tương tự a2^5-a2 chia hêt cho 30

......

a2013^5-a2013 chia hết cho 30

=> M-N chia hết cho 30 

Mà N chia hết cho 30 nên M chia hết cho 30

2 tháng 11 2017

cm M chia hết cho N á

Bài này làm r mà quên mất

21 tháng 9 2016

Ta có (a1 + a2 + ...+a2016)3 = 20166051

<=> a13 + a23 +...+ a20163 + 3A = 20166051

Vì 20166051 và 3A chia hết cho 3 nên a13 + a23 +...+ a2016chia hết cho 3

20 tháng 8 2017

không phải nha bạn

23 tháng 10 2018

ko biết làm