K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : 
A = 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\)
5A = 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\)
=> 5A - A = ( 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\) ) - ( 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\) ) 
=> 4A =  \(5^{2024}\)- 1
Nhận thấy : 
                  \(5^{2024}\) - 1 > ​​\(5^{2024}\)
=> 4A <  \(5^{2024}\) 
                            V
ậy 4A <  \(5^{2024}\) ​

Thấy hay tick hộ mk vs ạ

 

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 1:

$B=1+3+3^2+3^3+...+3^{100}$

$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$

$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$

$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$

$\Rightarrow B$ chia 4 dư 1.

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 2:

$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$

$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$

$\Rightarrow C+5C=5-5^{2025}$

$6C=5-5^{2025}$

$C=\frac{5-5^{2025}}{6}$

5 tháng 11 2023

A = 5 + 5² + 5³ + ... + 5²⁰²³

⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴

⇒ 4A = 5A - A

= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)

= 5²⁰²⁴ - 5

⇒ A = (5²⁰²⁴ - 5)/4

5 tháng 11 2023

A = 5 + 5² + 5³ + ... + 5²⁰²³

⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴

⇒ 4A = 5A - A

= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)

= 5²⁰²⁴ - 5

⇒ A = (5²⁰²⁴ - 5)/4

30 tháng 11 2021

\(a,A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\\ A=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\\ A=\left(1+5+5^2\right)\left(1+5^3+...+5^{57}\right)\\ A=31\left(1+5^3+...+5^{57}\right)⋮31\\ b,5A=5+5^2+5^3+...+5^{60}\\ \Rightarrow5A-A=4A=5^{60}-1\\ \Rightarrow A=\dfrac{5^{60}-1}{4}=\dfrac{5^{60}}{4}-\dfrac{1}{4}< \dfrac{5^{60}}{4}=B\)

30 tháng 11 2021

a. A = 1 + 5 + 52 + 53 + .... + 559

A = ( 1 + 5 + 52) + (53 + 54 + 55) +.....+ (557 + 558 + 559)

A = (1 + 5 + 52) + 53(1 + 5 + 52) + ..... + 557( 1 + 5 + 52)

A = (1 + 5 + 52)( 1 + 5+......+ 557)

A = 31(1 + 53+.....+ 557)

Vì có một thừa số 31 nên A ⋮ 31

30 tháng 11 2021

a: \(A=\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)

\(=31\left(1+...+5^{57}\right)⋮31\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:

a.

$A=1+5+5^2+5^3+...+5^{59}$

$= (1+5+5^2)+(5^3+5^4+5^5)+....+(5^{57}+5^{58}+5^{59})$
$=(1+5+5^2)+5^3(1+5+5^2)+....+5^{57}(1+5+5^2)$

$=31+5^3,31+,,,,,+5^{57}.31$

$=31(1+5^3+...+5^{57})\vdots 31$ (đpcm)

b.

$A=1+5+5^2+...+5^{59}$

$5A=5+5^2+5^3+...+5^{60}$

$\Rightarrow 4A=5A-A=5^{60}-1< 5^{60}$

$\Rightarrow A< \frac{5^{60}}{4}=B$

14 tháng 2 2016

ủng hộ mình nha

15 tháng 3 2023

dãy trên có tất cả :(100-51):1+1=50 phân số

Ta có : 1/2:50=1/100

=>1/2=1/100+1/100+1/100+...+1/100(có tất cả 50 phân số 1/100)

Các phân số trong dãy S đều lớn hơn 1/100 ngoại trừ phân số cuối

=>dãy S >1/2