Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}< 1\)
C/m nó nhỏ hơn 3/4 hả bạn ?
Có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{3}{4}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)(ĐPCM)
(2^2 + 2) + (2^3 + 2^4) +...........+(2^11 + 1)
= 2. (2+1) + 2^3. (2+1) + ........ + 2^9.(2+1) +(2^11+1)
= 2. 3 + 2^3. 3 + ..... + 2^9. 3 + (2^11 +1)
Vì 3 chia hết cho 3
=> A chia hết cho 3
Thật vậy 1/22 < 1/1.2
1/23 < 1/2.3
........................
1/20122 < 1/2011.2012
1/20132 < 1/2012.2013
1/22 + 1/22 + .....+1/20122 + 1/20132 < 1/1.2+1/2.3+...+1/2011.2012 + 1/2012.2013 (1)
Mà 1/1.2+1/2.3+ .... +1/2011.2012 + 1/2012.2013
= 1 - 1/2 + 1/2 - 1/3 + .....+ 1/2011 - 1/2012 + 1/2012 - 1/2013
= 1 - 1/2013
= 2012/2013 < 1 (2)
Từ (1) và (2) => A<1
bạn ghi câu hỏi ở trên mạng là ra mà chứ ở đây ko nhiều người quan tâm đến câu hỏi của bạn đâu