K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: có thể lập được 1*2*3*4=24(số)

b: Tổng là:

1234+1243+1324+1342+1423+1432+2134+2143

+2314+2341+2431+2413+3124+3142+3241+3214

+3412+3421+4123+4132+4312+4321+4213+4231

=66660

NV
24 tháng 7 2021

a. Gọi số đó là \(\overline{ab}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)

Theo quy tắc nhân ta có: \(5.5=25\) số

b. Gọi số đó là \(\overline{abc}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)

Có: \(5.5.4=100\) số

c. Gọi số đó là \(\overline{abcd}\)

Do số chẵn nên d chẵn

- TH1: \(d=0\) (1 cách chọn d)

a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn 

\(\Rightarrow1.5.4.3=60\) số

- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn

d.

Gọi số đó là \(\overline{abcde}\)

Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)

a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách

\(\Rightarrow3.4.4.3.2=288\) số

24 tháng 7 2021

Thanks ạ

NV
21 tháng 12 2022

1.

Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)

Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách

Tổng cộng: \(4.A_6^4\) cách

2.

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

a.

Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách

Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách

\(\Rightarrow A_6^4-A_5^3=300\) số

b.

Để số được lập là số chẵn \(\Rightarrow\) d chẵn

TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Tổng cộng: \(A_5^3+96=156\) số

Xác suất \(P=\dfrac{156}{300}=...\)

21 tháng 12 2022

cho e hỏi chữ "A" bấm máy sao

25 tháng 11 2019

Đáp án C.

Hướng dẫn giải: Gọi số cần tìm có dạng  

Chọn : có cách

Vậy có số.

28 tháng 3 2018

Đáp án A

 

Số các số thỏa mãn đề bài là

28 tháng 9 2021

Gọi số cần lập là \(\overline{a_1a_2a_3a_4}\)\(=m\in A\)\(a_i\ne a_j\)

a) a1\(\ne\)0\(\Rightarrow\)a1 có 9 cách chọn 

    Xếp 3 chữ số trong 9 chữ số còn lại có \(A_9^3\)

Có tất cả 9*\(A_9^3\)số cần lập

b)Số chẵn a4\(\in\)\(\left\{0,2,4,6,8\right\}\)

   + Với a4=0 có 1 cách chọn

      Xếp 3 số trong A\\(\left\{0\right\}\)vào 3 vị trí còn lại có \(A_9^3\)

      Có 1*\(A_9^3\)số cần lập.

   +Với a4\(\in\)\(\left\{2,4,6,8\right\}\) có 4 cách chọn

     Chọn a1 có 8 cách trong A\(\backslash\left\{0,a_4\right\}\)

     Chọn 2 trong X\(\backslash\left\{a_1,a_4\right\}\) vào 4 vị trí còn lại có \(A_8^2\) số cần lập

     có 4*8*\(A_8^2\)

vậy có tất cả 2269 số cần lập( cộng hai trường hợp trên).

28 tháng 9 2021

 9*A39A93

 cái này tính kiểu gì thế bạn
28 tháng 9 2021

a)\(A_9^4\)

b)Gọi số cần lập là \(\overline{a_1a_2a_3a_4}=m\)\(\in A\),\(a_i\ne a_j\)

Số cần lập là số chẵn nên a4\(\in\left\{2,4,6,8\right\}\) \(\Rightarrow\) có 4 cách chọn a4

Chọn 3 trong 8 chữ số của A\\(\left\{a_1\right\}\)\(\Rightarrow\)có \(A_8^3\)

có tất cả \(4\cdot A_8^3\)số cần lập

16 tháng 11 2019

Gọi   .Để lập  ta chọn các số a;b;c;d;e  theo thứ tự sau:

Chọn a: Vì a A; a 0  nên có 6 cách chọn a

Với mỗi cách chọn a ta thấy mỗi cách chọn b;c;d chính là một cách lấy ba phần tử của tập  và xếp chúng theo thứ tự, nên mỗi cách chọn b;c;d ứng với một chỉnh hợp chập 3 của 6 phần tử

Suy ra số cách chọn b;c;d  là:  

Theo quy tắc nhân ta có:  số thỏa yêu cầu bài toán.

Chọn B.