Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 1 + 2 + 22 + 23 + ...... + 22007
=> 2A = 2 + 22 + 23 + ...... + 22008
b) Suy ra : 2A - A = 22008 - 1
=> A = 22008 - 1
Vậy đpcm
a) ta có: A = 1 + 2^1 + 2^2 + 2^3 + ...+ 2^2007
=> 2A = 2 + 2^2+2^3+2^4+...+2^2008
b) ta có: 2A = 2 + 2^2 + 2^3 + 2^4+...+2^2008
=> 2A-A = 2^2008 - 1
A = 2^2008 - 1
\(a.\) \(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(\Rightarrow2A=2.\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)
\(b.\)Sai đề rồi, sửa lại:
Chứng minh: \(A=2^{2008}-1\)
C/m: \(2A=2+2^2+2^3+2^4+...+2^{2008}\)
\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2008}-\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow A=2^{2008}-1\)\(\left(đpcm\right)\)
Theo mk lak vậy !
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
a/ Có \(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(\Rightarrow2A=2\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)
b/ Có \(2A-A=\left(2+2^2+2^3+2^4+...+2^{2008}\right)-\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Leftrightarrow A=2+2^2+2^3+2^4+...+2^{2008}-1-2^1-2^2-2^3-...-2^{2007}\)
\(\Leftrightarrow A=2^{2008}-1\)
( bạn có chép sai đề không vậy )
Ngân 2K7: Đề sai ở câu b) phải là chứng minh :\(A=2^{2008}-1\)
\(A=1+2^1+2^2+2^3+...+2^{2007}\)
a) \(\Rightarrow2A=2+2^2+2^3+...+2^{2008}\)
b) Từ kết quả câu a),ta có: \(2A-A=A=2^{2008}-1^{\left(đpcm\right)}\)
Làm một lèo xong luôn :v
\(A=1+2+2^2+...+2^{2007}\)
\(2A=2+2^2+2^3+...+2^{2008}\)
\(2A-A=\left(2+2^2+...+2^{2008}\right)-\left(1+2+...+2^{2007}\right)\)
\(A=2^{2008}-1\)
Câu b) viết sai đề
b) Từ câu a ta thấy
\(A=2^{2006}-1\)
\(\RightarrowĐPCM\)
\(a,A=1+2+2^2+...+2^{2007}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2008}\)
\(\Rightarrow2A-A=A=2^{2008}-1\)