Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
A=21+22+23+...............+259+260
A=(21+22+23)+...............+(258+259+260)
A=2.(1+2+22)+............+258.(1+2+22)
A=2.7+.......................+258.7
A=(2+24+..............+258).7 chia hết cho 7(đpcm)
S=1+2+2^2+2^3+....+2^59 chia hết cho 3
S=(1+2)+(2^2+2^3)+..+(2^58+2^59)
S=1x(1+2)+2^2x(1+2)+.....+2^58x(1+2)
S=1x3+2^2x3+....+2^58x3
S=3x(1+2^2+.....+2^58)chia hết cho 3
Vậy S chia hết cho 3
tương tự chia hết cho 7 thì ghép 3 số đầu; 15 thì ghép 4 số
you học lớp mấy
Đặt \(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{59}+\frac{1}{60}\)
S có 30 số hạng.Nhóm thành ba nhóm, mỗi nhóm có 10 số hạng
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}\)
\(S< \frac{47}{60}< \frac{50}{60}=\frac{5}{6}\)(1)
\(S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}\)
\(S>\frac{37}{60}>\frac{35}{60}\left(2\right)\)
Từ (1) và (2) => \(\frac{7}{12}< S< \frac{5}{6}\)
hay \(\frac{7}{12}< \frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{59}+\frac{1}{60}< \frac{5}{6}\)
Sửa cái phần đây nhá : \(S>\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\)
\(A=1+5+5^2+5^3+...+5^{59}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)
\(=31\left(1+5^3+...+5^{57}\right)\)chia hết cho \(31\).
\(A=1+5+5^2+5^3+...+5^{59}\)
\(5A=5+5^2+5^3+5^4+...+5^{60}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{60}\right)-\left(1+5+5^2+5^3+...+5^{59}\right)\)
\(4A=5^{60}-1\)
\(A=\frac{5^{60}-1}{4}< \frac{5^{60}}{4}\).
Ta có: A = (2 + 22 + 23) + (24 + 25 + 26) + ..........+ (258 + 259 + 260)
= 2 . (1 + 2 + 4 ) + 24.(1+2+4) + ....... + 258.(1+2+4)
= 2.7 + 24.7 + .........+258.7
= 7.(2+24+.....+258)
\(A=1+3+3^2+3^3+...+3^{59}+3^{60}+3^{61}\)
\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{60}\left(1+3\right)\)
\(=4+3^2.4+...+3^{60}.4\)
\(=4\left(1+3^2+...+3^{60}\right)\)
Lời giải:
$A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}$
$> \frac{1}{1.2}+\frac{1}{3.4}=\frac{7}{12}$
Vậy ta có đpcm.