Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(101\cdot125+101\cdot25-101\cdot50\)
\(=101\cdot\left(125+25-50\right)\)
\(=101\cdot100\)
\(=10100\)
Bài 2:
\(76\cdot115+56\cdot24+59\cdot24\)
\(=76\cdot115+24\cdot\left(56+59\right)\)
\(=76\cdot115+24\cdot115\)
\(=115\cdot\left(76+24\right)\)
\(=115\cdot100\)
\(=11500\)
1.
a, => 21-x+3 < 0
=> 24-x < 0
=> x < 24
b, => 7+x > 0
=> x > -7
c, => x-1 < 0 ; x+2 > 0 ( vì x-1 < x+2 )
=> x < 1 ; x > -2
=> -2 < x < 1
Tk mk nha
Bài 2:
Với $n$ chẵn thì $n+4$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Với $n$ lẻ thì $n+7$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)
Bài 3:
a.
$101\vdots x-1$
$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$
$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$
Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$
b.
$a+3\vdots a+1$
$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$
$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$
$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
bạn phá ngoặc đi, rồi dùng quy tắc chuyển vế chuyển x ở vế bên phải sang vế bên trái rồi tính như bình thường.
a) \(\left(x+5\right)\left(3x-12\right)>0\)
\(\left(x+5\right).3.\left(x-4\right)>0\)
\(\Rightarrow\hept{\begin{cases}x+5>0\\x-4>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+5< 0\\x-4< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>-5\\x>4\end{cases}}\) hoặc \(\hept{\begin{cases}x< -5\\x< 4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>4\\x< -5\end{cases}}\)
vậy...
6A=5.7.6+7.9.6+9.11.6+11.13.6+13.15.6+...+99.101.6
6A=5.7.(9-3)+7.9.(11-5)+9.11.(13-7)+11.13.(15-9)+13.15.(17-11)+...+99.101.(103-97)
6A=-3.5.7+5.7.9-5.7.9+7.9.11-7.9.11+9.11.13-9.11.13+11.13.15-11.13.15+13.15.17-...-97.99.101+99.101.103
6A=99.101.103-3.5.7 => A=(99.101.103-3.5.7)/6