K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Đáp án B

Gọi là số cần tìm, để số này chia hết cho 4 thì ta phải có chia hết cho 4.

số tự nhiên có 4 chữ số tạo từ .

Ta thấy chỉ có các số là chia hết cho 4.

Do đó chọn có 7 cách, chọn a có 6 cách, chọn b có 7 cách nên có  

 

Vậy xác suất cần tính là  

27 tháng 12 2020

Mỗi bạn có 16 cách viết nên số phần tử không gian mẫu là 16^3.

Gọi A là biến cố '3 số được viết ra có tổng chia hết cho 3'

Các số tự nhiên từ 1 đến 16 chia thành 3 nhóm:

Nhóm I gồm các số tự nhiên chia hết cho 3 gồm 5 số.

Nhóm II gồm các số tự nhiên cho 3 dư 1 gồm 6 số.

Nhóm III gồm các số tự nhiên cho 3 dư 2 gồm 5 số.

Để ba số có tổng chia hết cho 3 thì xảy ra các trường hơp sau:

Cả ba bạn viết được số thuộc nhóm I có 5^3 cách.

Cả ba bạn viết được số thuộc nhóm II có 6^3 cách.

Cả ba bạn viết được số thuộc nhóm III có 5^3 cách.

Mỗi bạn viết được một số thuộc một nhóm có 3!×(5×6×5)

=> n(A) = 5^3 + 6^3 + 5^3 + 3!×(5×6×5) = 1366

Vậy P(A) = 1366/16^3

30 tháng 4 2023

loading...

17 tháng 3 2018

Chọn A

Số phần tử của A là A 9 4 = 3024 số. 

Số phần tử của không gian mẫu là  n ( Ω ) = 3024

Gọi A là biến cố: “Chọn được một số chia hết cho 11 và tổng bốn chữ số của nó chia hết cho 11”.

Xét số tự nhiên có 4 chữ số có dạng 

Theo bài ra ta có: và 

Suy ra 

Trong các chữ số 1;2;3;4;5;6;7;8;9 có các bộ số mà tổng chia hết cho 11 là  

Chọn 2 cặp trong 4 cặp số trên để tạo số 

Chọn {a;c} có 4 cách, chọn {b;d} có 3 cách, sau đó sắp thứ tự các số a, b, c, d. Ta được 4.3.2.2 = 48

Suy ra n(A) = 48

25 tháng 2 2018

Đáp án C

Cách giải:

Xét các số x = a; y = b + 1; z = c + 2; t = d + 3. Vì 1 ≤ a ≤ b ≤ c ≤ d ≤ 9 => 1 ≤ x < y < z < t ≤ 12 (*)

Và mỗi bộ 4 số (x;y;z;t) được chọn từ tập hợp 1 ; 2 ; . . . . ; 12  ta đều thu được bộ số thỏa mãn  (*). Do đó, số cách chọn 4 số trong 12 số là C 12 4   =   495  số suy ra  n ( X )   =   495

Số phần tử của không gian mẫu là   n ( Ω )   =   9 . 10 . 10 . 10 = 9000

Vậy xác suất cần tính là

12 tháng 5 2017

Chọn D

Chọn số tự nhiên có 4 chữ số bất kỳ có: (cách).

Gọi A là biến cố: “Số được chọn có dạng  a b c d ¯ , trong đó 1 ≤ abcd9” . (*)

Cách 1: Dùng tổ hợp

Nhận xét rằng với 2 số tự nhiên bất kỳ ta có: 

Do đó nếu đặt:

Từ giả thuyết  ta suy ra: 

Với mỗi tập con gồm 4 phần tử đôi một khác nhau được lấy ra từ {1,2,....,12}ta đều có được duy nhất một bộ số thoả mãn (**) và do đó tương ứng ta có duy nhất một bộ số (a,b,c,d) thoả mãn (*). Số cách chọn tập con thoả tính chất trên là tổ hợp chập 4 của 12 phần tử, do đó: 

Vậy 

Cách 2: Dùng tổ hợp lặp

Chọn số tự nhiên có 4 chữ số bất kỳ có: (cách).

Mỗi tập con có 4 phần tử được lấy từ tập {1,2,...,9}(trong đó mỗi phần tử có thể được chọn lặp lại nhiều lần) ta xác định được một thứ tự không giảm duy nhất và theo thứ tự đó ta có được một số tự nhiên có dạng   a b c d ¯ (trong đó ). Số tập con thoả tính chất trên là số tổ hợp lặp chập 4 của 9 phần tử

Do đó theo công thức tổ hợp lặp ta có:

 Vậy 

11 tháng 1 2019

Chọn A

Giả sử số cần lập là 

Số phần từ không gian mẫu: 

Gọi A là biến cố lấy được số chia hết cho 11 và tổng của các chữ số của chúng cũng chia hết cho 11.

Ta có: 

Từ 1,2,3,4,5,6,7,8,9 ta có 4 cặp tổng chia hết cho 11 là: 

NV
24 tháng 12 2020

Không gian mẫu: \(9999-1000+1=9000\)

Số số có 4 chữ số nhỏ hơn 2019 và chia hết cho 5 là: \(\dfrac{2015-1000}{5}+1=204\)

Xác suất: \(P=\dfrac{204}{9000}=\dfrac{17}{750}\)

25 tháng 12 2020

Chết, quên mất đấy, trễ toi 10p :v Merry Christmas nha, ko biết qua giờ lành rồi chúc còn có ý nghĩa gì ko :v