
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bài 1 tìm x dễ lắm bạn tự làm được
Bài 2 :
Ta có :
\(\left|x-3\right|\ge0\) \(\left(\forall x\in R\right)\)
\(\Rightarrow\)\(\left|x-3\right|+1328\ge1328\) ( cộng hai vế cho 1328 )
Dấu "=" xảy ra khi \(0+1328=1328\)
\(\Rightarrow\)\(\left|x-3\right|=0\)
\(\Rightarrow\)\(x-3=0\)
\(\Rightarrow\)\(x=3\)
Vậy \(A_{min}=1328\) khi \(x=3\)
Chú thích :
\(A_{min}\) là giá trị nhỏ nhất của A
\(\forall x\in R\) là với mọi x thuộc tập hợp số thực
Chúc bạn học tốt ~
- 5x + 15 = - 4x - ( - 9 )
- 5x + 15 = - 4x + 9
- 5x + 4x = - 15 + 9
- 1x = - 6
=> x = 6

\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)
\(\Rightarrow x+3-16⋮x+3\)
\(x+3⋮x+3\)
\(\Rightarrow16⋮x+3\)
tự làm tiếp!
b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)
để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất
=> x+3 là số nguyên dương nhỏ nhất
=> x+3=1
=> x = -2
vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)