Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`
Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`
`b)` Với `x >= 0,x ne 4` có:
`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[\sqrt{x}-2]/[\sqrt{x}-3]`
`c)` Với `x >= 0,x ne 4` có:
`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`
Có: `C >= 1`
`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`
`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`
`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`
Vì `x >= 0=>\sqrt{x} >= 0`
`=>\sqrt{x}-3 > 0`
`<=>x > 9` (t/m đk)
a: Khi x=64 thì \(A=\dfrac{3\cdot8+1}{8+2}=\dfrac{25}{10}=\dfrac{5}{2}\)
b: \(B=\dfrac{2\sqrt{x}-4-\sqrt{x}+5}{x-4}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+2}\)
a, Ta có : \(x=9\Rightarrow\sqrt{x}=3\)
Thay vào biểu thức A ta được : \(A=\frac{2}{3-2}=2\)
b, Với \(x\ge0;x\ne4\)
\(B=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{4\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(\sqrt{x}-2\right)+4\sqrt{x}}{x-4}\)
\(=\frac{x+2\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}=\frac{\sqrt{x}}{\sqrt{x}-2}\)( đpcm )
c, Ta có : \(A+B=\frac{3x}{\sqrt{x}-2}\)hay
\(\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2+\sqrt{x}}{\sqrt{x}-2}=\frac{3x}{\sqrt{x}-2}\)
\(\Rightarrow2+\sqrt{x}=3x\Leftrightarrow3x-2-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}=3x-2\Leftrightarrow x=9x^2-12x+4\)
\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\Leftrightarrow x=\frac{4}{9}\left(ktm\right);x=1\)( đk : \(x\ge\frac{2}{3}\))
a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)
Thay vào biểu thức A ta được : \(\frac{1}{2-1}=1\)
b, Với \(x\ge0;x\ne1\)
\(Q=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{x-1}-1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-2-x+1}{x-1}\)
\(=\frac{x+\sqrt{x}-2-x+1}{x-1}=\frac{\sqrt{x}-1}{x-1}=\frac{1}{\sqrt{x}+1}\)
c, Ta có : \(\frac{1}{Q}+P\le4\)hay\(1:\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}\le4\)ĐK : \(x\ne1\)
\(\Leftrightarrow\frac{x-1+1}{\sqrt{x}-1}-4\le0\Leftrightarrow\frac{x-4\sqrt{x}+4}{\sqrt{x}-1}\le0\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}\le0\Rightarrow\sqrt{x}-1\le0\Leftrightarrow\sqrt{x}\le1\Leftrightarrow x\le1\)do \(\left(\sqrt{x}-2\right)^2\ge0\)
Kết hợp với đk, vậy \(x< 1\)
1, thay x=4 (TMĐKXĐ) vào P ta được:
P=\(\dfrac{1}{\sqrt{4}-1}\)=1
vậy khi x=4 thì P =1
2,với x≥0,x≠1:
Q=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)-\(\dfrac{2}{\sqrt{x}-1}-1\)=\(\dfrac{\sqrt{x}-2-\sqrt{x}+1}{\sqrt{x}-1}\)=\(\dfrac{-1}{\sqrt{x}-1}\)
vậy Q=\(\dfrac{-1}{\sqrt{x}-1}\)
3,\(\dfrac{1}{Q}+P\le4\)
⇒1/\(\dfrac{-1}{\sqrt{x}-1}\)+\(\dfrac{1}{\sqrt{x}-1}\)≤4⇔\(\dfrac{-\sqrt{x}-1}{1}+\dfrac{1}{\sqrt{x}-1}\le4\)⇔\(\dfrac{-x+1+1}{\sqrt{x}-1}-4\le0\)⇔\(\dfrac{-x+2-4\sqrt{x}+4}{\sqrt{x}-1}\le0\)⇔\(\dfrac{-x-4\sqrt{x}+6}{\sqrt{x}-1}\le0\)⇔\(\dfrac{x+4\sqrt{x}-6}{\sqrt{x}-1}\le0\)⇔\(\dfrac{x+4\sqrt{x}+4-10}{\sqrt{x}-1}\le0\)
\(\dfrac{ \left(\sqrt{x}+2\right)^2-10}{\sqrt{x}-1}\le0\)⇒\(\sqrt{x}-1\le0\) (vì (\(\sqrt{x}+2\))\(^2\)≥0 ∀ x hay (\(\sqrt{x}+2\))\(^2\)-10>0 ∀ x)
⇔x≤1 (KTM)
vậy không có giá trị nào của x TM để \(\dfrac{1}{Q}+P\le4\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{3\sqrt{x}-2}{x-4}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}+2+3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-2\sqrt{x}+4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(P=A\cdot B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{x-2\sqrt{x}}{\sqrt{x}+2}\)
\(=\dfrac{x}{\sqrt{x}+2}\)
P<1
=>P-1<0
=>\(\dfrac{x-\sqrt{x}-2}{\sqrt{x}+2}< 0\)
=>\(x-\sqrt{x}-2< 0\)
=>\(\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4