Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(P\left(A\cap B\right)=P\left(A\right)+P\left(B\right)-P\left(A\cup B\right)\) nên
\(\dfrac{P\left(A\cap B\right)}{P\left(A\right)+P\left(B\right)}=\dfrac{P\left(A\right)+P\left(B\right)-P\left(A\cup B\right)}{P\left(A\right)+P\left(B\right)}=1-a\)
a) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) \Rightarrow P\left( B \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{2}{3}\)
\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{23}}{{30}}\)
b) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,5.P\left( A \right)\)
\(\begin{array}{l}P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) \Leftrightarrow 0,7 = P\left( A \right) + 0,5 - 0,5.P\left( A \right)\\ \Leftrightarrow 0,5P\left( A \right) = 0,2 \Leftrightarrow P\left( A \right) = 0,4\end{array}\)
a. \(f\left(x\right)=x.e^x\)
\(f'\left(x\right)=e^x+x.e^x\)
\(f"\left(x\right)=e^x+e^x+x.e^x=2e^x+x.e^x\)
\(f^{\left(3\right)}\left(x\right)=2e^x+e^x+x.e^x=3e^x+x.e^x\)
b.Từ (a) ta đi đến công thức (dự đoán)
\(f^{\left(n\right)}\left(x\right)=ne^x+x.e^x\) (1)
Chứng minh (1) bằng quy nạp như sau :
- (1) đã đúng với \(n=1,2,3\)
- Giả sử (1) đã đúng đến n, ta phải chứng minh :
\(f^{\left(n+1\right)}\left(x\right)=\left(n+1\right)e^x+x.e^x\) (2)
Thật vậy , từ giả thiết quy nạp, ta có :
\(f^{\left(n+1\right)}\left(x\right)=\left(f^{\left(n\right)}\left(x\right)\right)'=\left(ne^x+x.e^x\right)'=ne^x+e^x+x.e^x=\left(n+1\right)e^x+x.e^x\)
Vậy (2) đúng. Theo nguyên lí quy nạp suy ra (1) đúng với mọi \(n=1,2,3....\)
Tóm lại, ta có với mọi \(n=1,2,3....\)
\(f^{\left(n\right)}\left(x\right)=ne^x+x.e^x\)
a) Ta có f'(x) = 6(x + 10)'.(x + 10)5
\(=6.\left(x+10\right)^5\)
f"(x) = 6.5(x + 10)'.(x + 10)4 = 30.(x + 10)4.
=> f''(2) = 30.(2 + 10)4 = 622 080.
b) Ta có f'(x) = (3x)'.cos3x = 3cos3x,
f"(x) = 3.[-(3x)'.sin3x] = -9sin3x.
Suy ra f"\(\dfrac{-\pi}{2}\) = -9sin\(\dfrac{-3\pi}{2}\) = -9;
f"(0) = -9sin0 = 0;
f"\(\dfrac{\pi}{18}\) = -9sin\(\dfrac{\pi}{6}\) = \(\dfrac{-9}{2}\).
a) \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(AB\right)=P\left(A\right)+P\left(B\right)-P\left(A\right)P\left(B\right)\)
\(=0,6+0,3-0,18=0,72\)
b) \(P\left(\overline{A}\cup\overline{B}\right)=1-P\left(AB\right)=1-0,18=0,82\)