Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phần này dễ, bạn cứ làm theo hướng của phần b là được. Mình sẽ làm phần b khó hơn.
b) Ta có: a3-a = a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số tự nhiên liên tiếp nên
a.(a-1).(a+1) chia hết cho 3.
=> a3- a chia hết cho 3.
Chứng minh tương tự ta có b3 - b chia hết cho 3 và c3 - c chia hết cho 3 với mọi b,c thuộc N.
=> a3+b3+c3 - (a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc N.
Do đó nếu a3+b3+c3 chia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.
Vậy đpcm.
Tớ làm thêm một cách cho câu b nhé ;)
Ta có: \(a^3+b^3⋮3\Rightarrow a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2⋮3\) \(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)⋮3\)
Do a và b là các số tự nhiên => \(3ab\left(a+b\right)⋮3=>\left(a+b\right)^3⋮3\)
=> a+b chia hết cho 3
Ta chứng minh như sau:
+ Khi a và b là 2 số nguyên dương chia hết cho 3, thì tồn tại 2 số nguyên dương p và q sao cho:
- a = 3 p và b = 3q. Lúc đó: a^ 2 + b^2 = (3p)^2 + (3q)^2 = 9.p^2 + 9.q^2 = 3[ 3.p^2 + 3.q^2] = 3.H, với H là số tự nhiên.
Suy ra: a^2 + b^2 là số chia hết cho 3
Bài này giải bằng quy nạp
Mình ko có thời gian nên nói cách làm thôi
Ta có:
\(a^3+b^3-\left(a+b\right)\)
\(=a^3+b^3-a-b\)
\(=a\left(a^2-1\right)+b\left(b^2-1\right)\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)\)
Vì \(a\left(a-1\right)\left(a+1\right)\) là tích của ba số tự nhiên liên tiếp
\(\Rightarrow a\left(a-1\right)\left(a+1\right)\) chia hết cho 3
Vì \(b\left(b-1\right)\left(b+1\right)\) là tích của ba số tự nhiên liên tiếp
\(\Rightarrow b\left(b-1\right)\left(b+1\right)\) chia hết cho 3
\(\Rightarrow a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)\)chia hết cho 3
\(\Rightarrow a^3+b^3-\left(a+b\right)\) chia hết cho 3
Mà \(a^3+b^3\) chia hết cho 3
\(\Rightarrow a+b\) cũng chia hết cho 3
\(\RightarrowĐpcm\)
tại sao viết a^3+b^3-(a+b)