K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

Ta có:

\(a^3+b^3-\left(a+b\right)\)

\(=a^3+b^3-a-b\)

\(=a\left(a^2-1\right)+b\left(b^2-1\right)\)

\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)\)

\(a\left(a-1\right)\left(a+1\right)\) là tích của ba số tự nhiên liên tiếp

\(\Rightarrow a\left(a-1\right)\left(a+1\right)\) chia hết cho 3

\(b\left(b-1\right)\left(b+1\right)\) là tích của ba số tự nhiên liên tiếp

\(\Rightarrow b\left(b-1\right)\left(b+1\right)\) chia hết cho 3

\(\Rightarrow a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)\)chia hết cho 3

\(\Rightarrow a^3+b^3-\left(a+b\right)\) chia hết cho 3

\(a^3+b^3\) chia hết cho 3

\(\Rightarrow a+b\) cũng chia hết cho 3

\(\RightarrowĐpcm\)

13 tháng 9 2018

tại sao viết a^3+b^3-(a+b)

1 tháng 7 2016

a) Phần này dễ, bạn cứ làm theo hướng của phần b là được. Mình sẽ làm phần b khó hơn. 

b) Ta có: a3-a = a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số tự nhiên liên tiếp nên

a.(a-1).(a+1) chia hết cho 3.

 => a3- a chia hết cho 3.

Chứng minh tương tự ta có b3 - b chia hết cho 3 và c3 - c chia hết cho 3 với mọi b,c thuộc N.

=> a3+b3+c- (a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc N.

Do đó nếu  a3+b3+cchia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.

Vậy đpcm.

2 tháng 7 2016

Tớ làm thêm một cách cho câu b nhé ;) 

Ta có: \(a^3+b^3⋮3\Rightarrow a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2⋮3\) \(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)⋮3\)

Do a và b là các số tự nhiên => \(3ab\left(a+b\right)⋮3=>\left(a+b\right)^3⋮3\)

=> a+b chia hết cho 3 

 

 

20 tháng 12 2017

Ta chứng minh như sau: 
+ Khi a và b là 2 số nguyên dương chia hết cho 3, thì tồn tại 2 số nguyên dương p và q sao cho: 
- a = 3 p và b = 3q. Lúc đó: a^ 2 + b^2 = (3p)^2 + (3q)^2 = 9.p^2 + 9.q^2 = 3[ 3.p^2 + 3.q^2] = 3.H, với H là số tự nhiên.

Suy ra: a^2 + b^2 là số chia hết cho 3

26 tháng 12 2020

Ta có a3 - 5b3

= (a3 + b3) - 6b3

= (a + b)(a2 - ab + b2) - 6b3

Vì \(\hept{\begin{cases}\left(a+b\right)\left(a^2-ab+b^2\right)⋮6\left(\text{Vì }a+b⋮6\right)\\6b^3⋮6\end{cases}}\Rightarrow a^3-5b^3⋮6\)

31 tháng 12 2015

Bài này giải bằng quy nạp

Mình ko có thời gian nên nói cách làm thôi