Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $d=ƯCLN(a,b)$ thì đặt $a=dx, b=dy$ với $x,y$ là stn>0 và $(x,y)=1$.
Khi đó: $BCNN(a,b)=dxy$
Theo bài ra ta có:
$d+dxy=19$
$\Rightarrow d(1+xy)=19$
Vì $1+xy>1$ với mọi $x,y\in\mathbb{N}^*$ nên $1+xy=19; d=1$
$\Rightarrow xy=18; d=1$
Vì $(x,y)=1, a< b\Rightarrow x<y$
$\Rightarrow x=2, y=9$
$\Rightarrow a=dx=1.2=2; b=1.9=9$
Bạn tham khảo tại link sau
https://olm.vn/hoi-dap/detail/22224476315.html
chúc bạn
hok tốt
Bạn tham khảo tại link sau
https://olm.vn/hoi-dap/detail/22224476315.html
chúc bạn
hok tốt
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
nhân chứ sao cộng em. chị nghĩ đề phải là: BCNN(a;b) x UCLN(a;b)=a x b
Gọi UCLN(a;b)=d . Đặt a=dm, b=dn (m,n >0) => BCNN(a;b)=dmn
Ta có: BCNN(a;b) x UCLN(a;b)=a x b
<=> dmn x d =dm.dn . Điều này luôn đúng
Vậy ta có đpcm
ủa mik ghi nhân mà