K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

Ta có:\(a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)

Vì (a-2)(a-1)a(a+1)(a+2) là tích của 5 số nguyên liên tiếp nên có một số chia hết cho 2, một số chia hết cho 3 và một số chia hết cho 5. Mà 3 số này đôi một nguyên tố cùng nhau nên (a-2)(a-1)a(a+1)(a+2) chia hết cho 2.3.5=30 (*)

Vì (a-1)a(a+1) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3. Mà (2;3)=1 nên 5(a-1)a(a+1) chia hết cho 2.3.5=30 (**)

Từ (*)và(**) => \(a^5-5\) chia hết cho 30(đpcm)

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

23 tháng 9 2020

Có :

\(A=n^3-7n\)

\(=\left(n^3-n\right)-6n\)

\(=n.\left(n^2-1\right)-6n\)

\(=\left(n+1\right)n\left(n-1\right)-6n⋮6\)

30 tháng 9 2020

\(A=n^3-7n\)

\(=n^3-n-6n\)

\(=\left(n^3-n\right)-6n\)

\(=n\left(n^2-1\right)-6n\)

\(=\left(n+1\right)n\left(n-1\right)-6n⋮6\)

\(\Rightarrow A⋮6\left(dpcm\right)\)

6 tháng 1 2017

tách hết ra đk đấy

21 tháng 8 2019

Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)

\(n\left(n+1\right)\left(n+2\right)⋮3\)( tích 3 số tự nhiên liên tiếp chia hết cho 3)

\(n\left(n+1\right)⋮2\)(ích hai số tự nhiên liên tiếp chia hết cho 2)

Mà (2;3)=1

=> \(n\left(n+1\right)\left(n+2\right)⋮6\)

=>\(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)

Câu b em kiểm tra lại đề bài.

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

6 tháng 10 2018

Giả sử a+b không chia hết cho 5

Suy ra:

\(\left(a+b\right)^5\)không chia hết cho 5

\(\Leftrightarrow a^5+b^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4\)không chia hết cho 5

\(\Leftrightarrow\left(a^5+b^5\right)+5\cdot A\)không chia hết cho 5

\(\Leftrightarrow a^5+b^5\)không chia hết cho 5

Phản giả thiết

Vậy ......

Nếu không sử dụng phản chứng ta có thể chứng minh bằng pp khai triển giả thiết

\(a^5+b^5=\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)⋮5\)

Suy ra: \(\left(a+b\right)⋮5\)

Cũng có thể giải bằng quy nạp toán học

12 tháng 8 2020

\(a^5+29a=a^5-a+30a\)

Theo Fermat nhỏ thì \(a^5-a⋮5\) mặt khác \(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮6\)

nên \(a^5+29a⋮30\) ( điều phải chứng minh )