\(A_n=\dfrac{1}{\left(2n+1\right)\sqrt{2n-1}},\forall n\in N\text{*}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 12 2021

\(A_n=\dfrac{\sqrt{2n-1}}{\left(2n+1\right)\left(2n-1\right)}=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n+1}}\right)\)

\(< \dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n-1}}\right)\)

\(=\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\)

\(\Rightarrow A_1+A_2+...+A_n< 1-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+...+\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}=1-\dfrac{1}{\sqrt{2n+1}}< 1\)

8 tháng 10 2018

Gợi ý cho bạn:

Xét Aa với a nguyên dương, nhân vs can 2n-1 để dưới mẫu hết căn rồi thực hiện biến đổi thành phép trừ, sau đó phân thích theo hằng đẳng thức số 3. Nhân căn 2n-1 lức nãy vs thừa số có 2 phép cộng sau khi ph rồi cm thừa số sau nhân <1 

10 tháng 3 2017

\(\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\)

\(\Leftrightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{n}{2n-1}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{2\left(a_1+a_2+...+a_n\right)-\left(a^2_1+a^2_2+...+a_n^2\right)}\)

\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{1}{2-\left(a^2_1+a^2_2+...+a_n^2\right)}\)

Chứng minh rằng \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)

\(\Leftrightarrow2n-1\ge n\left[2-\left(a^2_1+a^2_2+...+a^2_n\right)\right]\)

\(\Leftrightarrow2n-1\ge2n-n\left(a^2_1+a^2_2+...+a^2_n\right)\)

\(\Leftrightarrow-1\ge-n\left(a^2_1+a^2_2+...+a^2_n\right)\)

\(\Leftrightarrow1\le n\left(a^2_1+a^2_2+...+a^2_n\right)\)

\(\Leftrightarrow\dfrac{1}{n}\le a^2_1+a^2_2+...+a^2_n\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow VP=\dfrac{a^2_1}{1}+\dfrac{a^2_2}{1}+...+\dfrac{a^2_n}{1}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n}=\dfrac{1}{n}\)

\(\Rightarrow\) đpcm

Vậy \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)

\(\Rightarrow\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\) ( đpcm )

10 tháng 3 2017

lp 7