\(\left(\dfrac{\sqrt{x+1}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

\(A=\dfrac{-\left(\sqrt{x}+1\right)\left(2+\sqrt{x}\right)-2\sqrt{x}\left(2-\sqrt{x}\right)+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)

\(A=\dfrac{-3\sqrt{x}-x-2-4\sqrt{x}+2x+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-x-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)^3}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{-\left(\sqrt{x}+2\right)^2}{\left(2-\sqrt{x}\right)\left(3-\sqrt{x}\right)}\)

 

26 tháng 5 2021

Mình sửa đầu bài

12 tháng 5 2017

a/ ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)

= \(\dfrac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

= \(\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

= \(\dfrac{4\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

= \(\dfrac{4\sqrt{x}}{\sqrt{x}+1}\)

b/ Với \(x\ge0,x\ne1\)

Để \(P=\sqrt{x}-1\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)

\(\Leftrightarrow4\sqrt{x}=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow x-4\sqrt{x}-1=0\)

\(\Leftrightarrow\left(\sqrt{x}-2+\sqrt{5}\right)\left(\sqrt{x}-2-\sqrt{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2+\sqrt{5}=0\\\sqrt{x}-2-\sqrt{5}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2-\sqrt{5}\left(ktm\right)\\\sqrt{x}=2+\sqrt{5}\left(tm\right)\end{matrix}\right.\)

\(\Leftrightarrow x=9+4\sqrt{5}\)

Vậy để \(P=\sqrt{x}-1\) thì \(x=9+4\sqrt{5}\)

a: Sửa đề; \(P=\left(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)

\(=\dfrac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)

\(=\dfrac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{1-\sqrt{x}}=\dfrac{3\sqrt{x}}{1-\sqrt{x}}\)

b: Để \(P=\sqrt{x}\) thì \(3\sqrt{x}=\sqrt{x}-x\)

\(\Leftrightarrow x+2\sqrt{x}=0\)

hay x=0

16 tháng 10 2018

Cho \(5\sqrt{x}7\) mk viet nham

Sua lai thanh \(5\sqrt{x}-7\)

19 tháng 10 2022

a: \(A=\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)

b: Để A là số nguyên thì \(5\sqrt{x}⋮2\sqrt{x}+1\)

=>10 căn x+5-5 chia hết cho 2 căn x+1

=>\(2\sqrt{x}+1\in\left\{1;5\right\}\)

hay \(x\in\varnothing\)

4 tháng 8 2018

1. \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)

\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)

\(=\sqrt{a}+2-\sqrt{a}-2\)

= 0

2: \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\dfrac{y\sqrt{x}-x\sqrt{y}}{\sqrt{xy}}\)

\(=\sqrt{x}-\sqrt{y}+\sqrt{y}-\sqrt{x}=0\)

4: \(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\dfrac{1}{1+\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}=\sqrt{a}+1\)

13 tháng 10 2022

\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}+\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{2}\right)}{-\sqrt{x}}\)

15 tháng 6 2017

Lần sau ghi dấu ra xíu nhé :v

a) Đặt \(\sqrt{x}=a\Rightarrow B=\left(\dfrac{a}{a+4}+\dfrac{4}{a-4}\right):\dfrac{a^2+16}{a+2}\)

Quy đồng,rút gọn : \(B=\dfrac{a+2}{a^2-16}\Rightarrow B=\dfrac{\sqrt{x}+2}{x-16}\)

b) \(B\left(A-1\right)=\dfrac{\sqrt{x}+2}{x-16}\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)=\dfrac{2}{x-16}\)

x - 16 là ước của 2 => \(x\in\left\{14;15;17;18\right\}\)

mới làm quen toán 9 ;v có gì k rõ ae chỉ bảo nhé :))

15 tháng 6 2017

dung ko the ban, sao ngan the ?

28 tháng 4 2017

\(ĐKXĐ:x\ge0,x\ne1\)

= \(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

= \(\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

= \(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) (1)

b/ Ta có: \(x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

Thay \(x=\left(\sqrt{3}-1\right)^2\) vào (1) ta được:

\(\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\left(\sqrt{3}-1\right)^2+\sqrt{\left(\sqrt{3}-1\right)^2}+1}\)= \(\dfrac{\sqrt{3}-1}{4-2\sqrt{3}+\sqrt{3}-1+1}=\dfrac{\sqrt{3}-1}{4-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}-1\right)\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}=\dfrac{3\sqrt{3}-1}{13}\)

Vậy giá trị của A khi \(x=4-2\sqrt{3}\)\(\dfrac{3\sqrt{3}-1}{13}\)

28 tháng 4 2017

\(p=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x+2}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

=\(\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}\)

=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

=\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

học tốt nhé anh trai

a: \(=-4+2\sqrt{5}-\sqrt{5}+2+\sqrt{5}=2\sqrt{5}-2\)

b: \(B=\dfrac{2\sqrt{x}+4+6\sqrt{x}-3-2\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}}{6\sqrt{x}+4}\)

\(=\dfrac{\left(6\sqrt{x}+1\right)\cdot\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\left(6\sqrt{x}+4\right)}\)