Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai 1
\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right).....\left(\dfrac{1}{10}-1\right)\)
\(A=\left(\dfrac{1-2}{2}\right)\left(\dfrac{1-3}{3}\right).....\left(\dfrac{1-9}{10}\right)\)
\(A=-\left(\dfrac{1.2.3.....8.9}{2.3....9.10}\right)=-\dfrac{1}{10}>-\dfrac{1}{9}\)
\(A=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{10}-1\right)\)
\(=\left(\dfrac{1}{2}-\dfrac{2}{2}\right).\left(\dfrac{1}{3}-\dfrac{3}{3}\right)...\left(\dfrac{1}{10}-\dfrac{10}{10}\right)\)
\(=\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}...\dfrac{-9}{10}\)
\(=\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-9\right)}{2.3.4...8.9.10}\)
\(=\dfrac{-1}{10}>\dfrac{-1}{9}\)
\(\Rightarrow A>-\dfrac{1}{9}\)
Nguyễn Đang Huy người ta ngu còn hơn cái loại bảo người ta ngu
\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)...\left(\dfrac{1}{400}-1\right)\)
\(=\left(\dfrac{-3}{4}\right)\left(\dfrac{-8}{9}\right)\left(\dfrac{-15}{16}\right)...\left(\dfrac{-399}{400}\right)\)
\(=\dfrac{-3.8.15...399}{4.9.16...400}\)
\(=\dfrac{-3.2.4.3.5...21.19}{2^2.3^2.4^2...20^2}\)
\(=\dfrac{-2.3.4...19}{2.3.4...20}.\dfrac{3.4.5...21}{2.3.4...20}\)
\(=\dfrac{-1}{20}.\dfrac{21}{2}\)
\(=\dfrac{-21}{40}< \dfrac{-1}{2}\)
Vậy \(A< \dfrac{-1}{2}\)
\(\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-0,75:1\dfrac{1}{2}-1,25^2\)
\(=\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-\dfrac{3}{4}:\dfrac{3}{2}-\dfrac{25}{16}\) \(=\left(\dfrac{31}{30}-\dfrac{9}{10}\right).\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{2}{15}.\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\left(-\dfrac{1}{50}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{8}{25}\)
Các bạn trả lời giúp mk nha. Mk đang cần gấp. Chều nay mk kiểm tra rồi
a)
\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)
đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)
vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)
c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn
\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)
d)
\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)
e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)
Sửa đề:
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)....\left(\dfrac{1}{100^2}-1\right)\)
\(A=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)\left(\dfrac{1}{4^2}-\dfrac{4^2}{4^2}\right)....\left(\dfrac{1}{100^2}-\dfrac{100^2}{100^2}\right)\)
\(A=\dfrac{\left(1-2^2\right)}{2^2}.\dfrac{\left(1-3^2\right)}{3^2}.\dfrac{\left(1-4^2\right)}{4^2}....\dfrac{\left(1-100^2\right)}{100^2}\)
\(A=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}.\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}.\dfrac{\left(1-4\right)\left(1+4\right)}{4^2}......\dfrac{\left(1-100\right)\left(1+100\right)}{100^2}\)
\(A=\dfrac{-3}{2^2}.\dfrac{-8}{3^2}.\dfrac{-15}{4^2}....\dfrac{-9999}{100^2}\)
Ta xét từ \(2\) đến \(100\) có: \(\dfrac{\left(100-2\right)}{1}+1=99\)
\(50\) là số lẻ nên tích trên là số âm
Hay \(-A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}\)
\(-A=\dfrac{1.3.2.4.3.5....99.101}{2.2.3.3.4.4.....100.100}\)
\(-A=\dfrac{1.2.3....99}{2.3.4....100}.\dfrac{3.4.5....101}{2.3.4....100}\)
\(-A=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)
\(A=-\dfrac{101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)..............\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right).............\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}.\dfrac{3}{2}.\dfrac{-2}{3}.\dfrac{4}{3}.............\dfrac{-99}{100}.\dfrac{101}{100}\)
\(=\dfrac{-\left(1.2.3....99\right)}{2.3......100}.\dfrac{3.4...101}{2.3....100}\)
\(=\dfrac{-1}{100}.\dfrac{101}{2}\)
\(=\dfrac{-101}{200}< \dfrac{-1}{2}\)
\(\Leftrightarrow A< \dfrac{-1}{2}\)
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}.\dfrac{3}{2}.\dfrac{-2}{3}.\dfrac{4}{3}...\dfrac{-99}{100}.\dfrac{101}{100}\)
\(=\dfrac{-\left(1.2...99\right)}{2.3...100}.\dfrac{3.4...101}{2.3...100}=\dfrac{-1}{100}.\dfrac{101}{2}\)
\(=\dfrac{-101}{200}< \dfrac{-1}{2}\)
\(\Rightarrow A< \dfrac{-1}{2}\)
Ta có:
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{10}-1\right)\)
\(A=-\dfrac{1}{2}\cdot-\dfrac{2}{3}-\dfrac{3}{4}\cdot...\cdot-\dfrac{9}{10}\)
\(A=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-9}{2\cdot3\cdot4\cdot...\cdot10}\)
\(A=-\dfrac{1}{10}\)
Mà: \(10>9\)
\(\Rightarrow\dfrac{1}{10}< \dfrac{1}{9}\)
\(\Rightarrow-\dfrac{1}{10}>-\dfrac{1}{9}\)
\(\Rightarrow A>-\dfrac{1}{9}\)