K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Đáp án D

Số phần tử của E là W32AEeyonkPI.png Trong E có 6 số chia hết cho 10 là 10, 20, 30, 40, 50, 60.

 Số cách lấy ngẫu nhiên đồng thời hai phần tử trong E là yeNpQqbyVLfX.pngcặp. 

Biến cố M “lấy được ít nhất một số chia hết cho 10” gồm exCHRh3x8G9x.pngcách lấy được 2 số chia hết cho 10 và tIpRkGTzFre3.png cách lấy được 1 số chia hết cho 10 và 1 số không chia hết cho 10. 

Vậy số phần tử của biến cố M là 

FIVq0Bdtkqys.png

30 tháng 7 2018

2 tháng 12 2022

Số các số có `8` chữ số đôi một khác nhau là `9.A_9^7`(số)

`=> n(A) = n(\Omega) = 9.A_9^7`

Dễ thấy rằng `0 + 1 + 2 + .. + 9 = 45 \vdots 9`

Gọi `X = {0;1;..;9}`

Để số đó chia hết cho `8` thì nó phải được chọn từ các tập 

`X \\ {0;9}` , `X \\ {1;8}` , `X \\ {2;7}` , `X \\ {3;6}` , `X \\ {4;5}` 

Ta xét `2` trường hợp như sau:

Trường hợp `1`: Số đó được chọn từ tập `X \\ {0;9}` 

Xếp `8` số vào `8` vị trí có `8!`(cách)

Trường hợp `2`:Số đó được chọn từ `4` tập còn lại

Chọn `1` trong `4` tập có `C_4^1`(cách)

Xếp `8` chữ số vừa chọn `1` cách ngẫu nhiên có `8!`(cách)

Cho số `0` đứng đầu xếp `7` số còn lại có `7!` cách

Số lập được:`4(8!-7!)`(số)

Gọi `B` là biến cố chọn được số chia hết cho `9` từ tập `A`

`=> |B| = 8! + 4(8!-7!)`

Xác xuất biến cố `B`:

`P(B) = \frac{8!+4(8!-7!)}{9.A_9^7} = \frac{1}{9}`

NV
18 tháng 3 2021

"Một số lẻ chữ số 1 và 1 số chẵn chữ số 2" nghĩa là sao nhỉ?

Bạn có thể ghi 1 cách chính xác tuyệt đối đề bài không?

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Có 900 số tự nhiên có 3 chữ số \( \Rightarrow n\left( \Omega  \right) = 900\)

Gọi \({A_1}\) là biến cố: “Số được chọn chia hết cho 2”, \({A_2}\) là biến cố “Số được chọn chia hết cho 7”.

Vậy \({A_1}{A_2}\) là biến cố “Số được chọn chia hết cho 14”, \(A = {A_1} \cup {A_2}\) là biến cố “Số được chọn chia hết cho 2 hoặc 7”.

Có 450 số có 3 chữ số chia hết cho 2 \( \Rightarrow n\left( {{A_1}} \right) = 450 \Rightarrow P\left( {{A_1}} \right) = \frac{{n\left( {{A_1}} \right)}}{{n\left( \Xi  \right)}} = \frac{{450}}{{900}} = \frac{1}{2}\)

Có 128 số có 3 chữ số chia hết cho 7 \( \Rightarrow n\left( {{A_2}} \right) = 128 \Rightarrow P\left( {{A_2}} \right) = \frac{{n\left( {{A_2}} \right)}}{{n\left( \Omega  \right)}} = \frac{{128}}{{900}} = \frac{{32}}{{225}}\)

Có 64 số có 3 chữ số chia hết cho 14

\( \Rightarrow n\left( {{A_1}{A_2}} \right) = 64 \Rightarrow P\left( {{A_1}{A_2}} \right) = \frac{{n\left( {{A_1}{A_2}} \right)}}{{n\left( \Omega  \right)}} = \frac{{64}}{{900}} = \frac{{16}}{{225}}\)

\( \Rightarrow P\left( A \right) = P\left( {{A_1} \cup {A_2}} \right) = P\left( {{A_1}} \right) + P\left( {{A_2}} \right) - P\left( {{A_1}{A_2}} \right) = \frac{1}{2} + \frac{{32}}{{225}} - \frac{{16}}{{225}} = \frac{{257}}{{450}}\)

Gọi \({B_1}\) là biến cố: “Số được chọn có 3 chữ số chẵn”, \({B_2}\) là biến cố “Số được chọn có 1 chữ số chẵn và 2 chữ số lẻ”.

Vậy \(B = {B_1} \cup {B_2}\) là biến cố “Số được chọn có tổng các chữ số là số chẵn”.

Có \(4.5.5 = 100\) số có 3 chữ số chẵn \( \Rightarrow n\left( {{B_1}} \right) = 100 \Rightarrow P\left( {{B_1}} \right) = \frac{{n\left( {{B_1}} \right)}}{{n\left( \Omega  \right)}} = \frac{{100}}{{900}} = \frac{1}{9}\)

 

Có \(4.5.5 = 100\) số có 3 chữ số có chữ số hàng trăm chẵn, 2 chữ số còn lại lẻ.

Có \(5.5.5 = 125\) số có 3 chữ số có chữ số hàng chục chẵn, 2 chữ số còn lại lẻ.

Có \(5.5.5 = 125\) số có 3 chữ số có chữ số hàng đơn vị chẵn, 2 chữ số còn lại lẻ.

\( \Rightarrow n\left( {{B_2}} \right) = 100 + 125 + 125 = 350 \Rightarrow P\left( {{B_2}} \right) = \frac{{n\left( {{B_2}} \right)}}{{n\left( \Omega  \right)}} = \frac{{350}}{{900}} = \frac{7}{{18}}\)

Vì \({B_1}\) và \({B_2}\) là hai biến cố xung khắc nên ta có:

\(P\left( B \right) = P\left( {{B_1} \cup {B_2}} \right) = P\left( {{B_1}} \right) + P\left( {{B_2}} \right) = \frac{1}{9} + \frac{7}{{18}} = \frac{1}{2}\)

23 tháng 12 2018

Chọn A

+ Ta có 

Ta có d có 4 cách chọn {2;4;6;8}, a có 9 cách chọn, b có 9 cách chọn. Vì a + b + d  khi chia cho 3 có 3 khả năng số dư 

{0;1;2}, mà  nên c có 3 cách chọn.

Ta có: 

Xác suất cần tìm là: