K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

số có 9 chữ sô chia hết cho 5 thì có chữ số đơn vị là 5 là 1 trong 9 số cho

chữ số tiếp theo có 8 trường hợp vì bỏ số 5

tiếp nữa còn 7 trường hợp ..v...v

đến chữ số thứ 9 còn 1 trương hợp

nên số các số sẽ là 1.8.7.6.5.4.3.2.1=40320 số

6 tháng 3 2017

đề violympic ak

40320 số bạn nha

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

21 tháng 3 2017

\(\left\{{}\begin{matrix}\left(1,2,3\right)\rightarrow\left(abcd\right)\\\left(a+b+c+d\right)⋮9\end{matrix}\right.\)

Ta có: 1+2+3=6 => ít nhất phải có 2 số 3.

nếu (abcd)=(ab33)=> a,b <3 => không thể nhiều hơn 2 số 3

Vậy cách xép a,b,c duy nhất: có 2 số 3 hai số còn lại là 1,2:

(a,b,c,d)-->

a--> có 3 lựa chọn {1,2,3}

b--> có 3 lựa chọn {1,2,3}

c--> có lựa chọn {1,2} hoắc {(1,2),3}

d còn 1 lựa chọn

3.3.2=18 số

khi {a,b} chọn {1,2} => c chỉ có duy nhất lựa chọn là 3 :

vậy phải trừ đi 6 lựa chọn 18-6=12

vậy có 12 số:

17 tháng 1 2019

Ta có:

a)  ( 3 n   + 1 ) 2  - 25 = 3(3n - 4)(n + 2) chia hết cho 3;

b)  ( 4 n   + 1 ) 2  - 9 = 8(2n - 1)(n +1) chia hết cho 8.

10 tháng 9 2018

a) Ta có: ( 3 n   -   1 ) 2  - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).

Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên  ( 3 n   -   1 ) 2  - 4 chia hết cho 3 với mọi số tự nhiên n;

b) Ta có: 100 - ( 7 n   +   3 ) 2  =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.

16 tháng 11 2021

Với \(n=1\Leftrightarrow a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)⋮\left(a+b\right)\)

Giả sử \(n=k\Leftrightarrow\left(a^{2k+1}+b^{2k+1}\right)⋮\left(a+b\right)\)

Với \(n=k+1\)

Cần cm: \(\left(a^{2k+3}+b^{2k+3}\right)⋮\left(a+b\right)\left(1\right)\)

\(\Leftrightarrow a^{2k+3}+b^{2k+3}=a^{2k+1}\cdot a^2+b^{2k+1}\cdot b^2\\ =a^{2k+1}\cdot a^2+b^{2k+1}\cdot a^2-b^{2k+1}\cdot a^2+b^{2k+1}\cdot b^2\\ =a^2\left(a^{2k+1}+b^{2k+1}\right)-b^{2k+1}\left(a^2-b^2\right)\)

Do \(\left(a^{2k+1}+b^{2k+1}\right)⋮\left(a+b\right);\left(a^2-b^2\right)⋮\left(a-b\right)\)

Do đó \(\left(1\right)\) luôn đúng

Theo pp quy nạp suy ra đpcm