Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Chứng minh: chia hết cho 24
+) Chứng minh a2 - 1 chia hết cho 3 ( đã chứng minh)
+) Chứng minh a2 - 1 chia hết cho 8
a2 - 1 = (a - 1)(a+ 1) Vì a là số nguyên tố > 3 nên a lẻ => a - 1 và a + 1 chẵn
Ta có a - 1 và a+ 1 là 2 số nguyên liên tiếp nên đặt a - 1 = 2k ; a + 1 = 2k + 2
=> a2 - 1 = 2k.(2k+2) = 4.k.(k+1)
Vì k; k+ 1 là 2 số nguyên liên tiếp nên k.(k+1) chia hết cho 2 =>a2 - 1 = 4k(k+1) chia hết cho 4.2 = 8
Vậy a2 -1 chia hết cho cả 3 và 8 nên chia hết cho 24