Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a là số tự nhiên lẻ ,b là một số tự nhiên . Chứng minh rằng các số a và ab+4 nguyên tố cùng nhau
Giả sử a và ab + 4 cùng chia hết cho số tự nhiên d ( d khác 0 )
Như vậy thì ab chia hết cho d , do đó hiệu ( ab + 4 ) - ab = 4 cũng chia hết cho d
=> d = { 1 ; 2 ; 4 }
Nhưng đầu bài đã nói a là 1 số tự nhiên lẻ => a và ab + 4 là các số nguyên tố cùng nhau
Gọi k là ước số của a và ab+4
Do a lẻ => k lẻ
Ta có:
ab+4=kp (1)
a=kq (2)
Thay (2) vào (1)
=> kqb+4 =kp
=> k(p-qb)=4
=> p-qb =4/k
do p-qb nguyên => k là ước lẻ của 4 => k=1
Vậy a và ab+4 nguyên tố cùng nhau
Gọi k là ước số của a và ab+4
Do a lẻ => k lẻ
Ta biểu diễn:
{ab+4=kp (1)
{a=kq (2)
Thay (2) vào (1)
=> kqb+4 =kp
=> k(p-qb)=4
=> p-qb =4/k
do p-qb nguyên => k là ước lẻ của 4 => k=1
Vậy a và ab+4 nguyên tố cùng nhau
cho a là số tự nhiên lẻ , b là một số tự nhiên
chứng minh rằng các số a và ab+4 nguyên tố cùng nhau.
a và ab+4 NTCN
gọi d là ƯCLN(a;ab+4) (điêu kiện gì đó thêm vào nghen)
=>a chia het cho d và ab+4 chia hết cho d
=>ab chia hết cho d và ab+4 chia hết cho d
=>(ab+4)-(ab) chia hết cho d
=>4 chia hết cho d
=>d={1;2;4}
d khác 4;2 vì nếu d là 4;2 thì a là lẻ => không chia hết cho 2;4
=> d=1
=>a và ab+4 NTCN
cho like nếu đúng nghen
gọi d là ƯCLN(a;ab+4) (điêu kiện gì đó thêm vào nghen)
=>a chia het cho d và ab+4 chia hết cho d
=>ab chia hết cho d và ab+4 chia hết cho d
=>(ab+4)-(ab) chia hết cho d
=>4 chia hết cho d
=>d={1;2;4}
d khác 4;2 vì nếu d là 4;2 thì a là lẻ => không chia hết cho 2;4
=> d=1
=>a và ab+4 NTCN
chc\úc bn hok tốt @_@
Gọi k là ước số của a và ab+4
Do a lẻ => k lẻ
Ta biểu diễn:
{ab+4=kp (1)
{a=kq (2)
Thay (2) vào (1)
=> kqb+4 =kp
=> k(p-qb)=4
=> p-qb =4/k
do p-qb nguyên => k là ước lẻ của 4 => k=1
Vậy a và ab+4 nguyên tố cùng nhau
tich cái rồi mk trả lời