K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

Đặt \(a=19k+3,b=38n+5\left(k,n\in N\right)\)

\(\Rightarrow3a+2b=57k+9+76n+10\)

\(=19\left(3k+4n+1\right)⋮19\)

28 tháng 10 2021

không nhé

 

a=19k+3

b=38x+5

3a+2b=57k+9+76x+10

=19(3k+4x+1)\(⋮\)19

 

27 tháng 10 2021
Giúp mik nhé
27 tháng 9 2021

ko nha

27 tháng 9 2021

Cậu giải thích vì sao hộ mình được ko?

8 tháng 7 2021
a=25 a k chia hết cho 3 a chia hết cho 5
14 tháng 12 2020

1/

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2

+ Nếu \(n⋮3\) Bài toán đã được c/m

+ Nếu n chia 3 dư 1 => \(n+2⋮3\)

+ Nếu n chia 3 dư 2 => \(n+1⋮3\)

Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3

2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau

\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)

\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)

\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4

3/

a/ Gọi 3 số TN liên tiếp là n; n+1; n+2

\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)

b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3

\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)

Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4

9 tháng 8 2018

1)  Gọi thương của a khi chia cho 24 là: x

Ta có:\(a=24x+10=2\left(12x+5\right)\)\(⋮\)\(2\)

=> a chi hết cho 2

          \(a=24x+10\)

Nhận thấy:   \(24x\)\(⋮\)\(4\)nhưng   \(10\)không chia hết cho \(4\)

=> a không chia hết cho \(4\)

2)

a)  Gọi 2 số tự nhiên liên tiếp là: \(a;\)\(a+1\)

nếu: \(a=2k\)thì \(a⋮2\)

nếu:  \(a=2k+1\)thì:  \(a+1=2k+1+1=2k+2\)\(⋮\)\(2\)

Vậy trong 2 số tự nhiên liên tiếp luôn tồn tại 1 số chhia hết cho 2

b) ktra lại đề

31 tháng 12 2018

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 

2 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

22 tháng 4 2018