K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

quy đồng mẫu số ta được

\(\frac{\left(a-b\right)^2}{a\left(a^2-b^2\right)}+\frac{\left(a+b\right)^2}{a\left(a^2-b^2\right)}=\frac{a\left(3a-b\right)}{a\left(a^2-b^2\right)}\)<=> (a-b)2 +(a+b)2 = a(3a-b) <=> a2- ab- 2b2= 0 <=> (a+ b)(a- 2b) = 0

<=> a=-b hoăc a =2b

với a= -b => P= \(\frac{-b^3+2b^3+2b^3}{-2b^3-b^3+2b^3}=-3\)

với a =2b => P= \(\frac{\left(2b\right)^3+2.\left(2b\right)^2b+2b^3}{2.\left(2b\right)^3+2b.b^2+2b^3}=\frac{3}{2}\)

3 tháng 8 2017

Quy đồng lên :3

17 tháng 12 2018

Bài này dễ mà bạn

17 tháng 12 2018

dễ thì bn giải hộ mk đi,nói đc lm đc nhỉ

26 tháng 11 2021

A = 0

26 tháng 11 2021

A=0

NV
14 tháng 8 2020

Coi như biểu thức xác định

\(\frac{a-b}{a\left(a+b\right)}+\frac{a+b}{a\left(a-b\right)}=\frac{3a-b}{\left(a-b\right)\left(a+b\right)}\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a+b\right)^2=a\left(3a-b\right)\)

\(\Leftrightarrow2a^2+2b^2=3a^2-ab\)

\(\Leftrightarrow a^2-ab-2b^2=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow a=2b\Leftrightarrow\frac{a}{b}=2\)

\(P=\frac{\left(\frac{a}{b}\right)^3+2\left(\frac{a}{b}\right)^2+2}{2\left(\frac{a}{b}\right)^3+\frac{a}{b}+2}=\frac{2^3+2.2^2+2}{2.2^3+2+2}=...\)

17 tháng 12 2017

đặt \(3^{13579}=m\).

Vì (3;13579)=1 nên (13579;m)=1 (*)

đem m+1 số \(13579;13579^2;...;13579^{m+1}\)chia cho m

Theo nguyên lý Dirichle  trong m+1 số trên có ít nhất 2 số khi chia cho m có cùng số dư

Gọi 2 số đó là \(13579^x\&13579^y\)(tự đk cho x;y)

giả sử x>y

=>13579^x-13579^y chia hết cho m

=>\(13579^y\left(13579^{x-y}-1\right)\)chia hết cho m

mà 13579^y không chia hết cho m nên 13579^x-y  -1 chia hết cho m

=>tồn tại n=x-y thỏa mãn đề bài

17 tháng 12 2017

tại sao 13579^y ko chia hết cho m