Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A - B =(1 + 1/3 + 1/5 + 1/7 + ... + 1/2009 +1/2011) - (1/2 + 1/4 + 1/6 + ... + 1/2010 + 1/2012 )
A - B = 1 + 1/3 + 1/5 + 1/7 + ... + 1/2009 +1/2011 - 1/2- 1/4 - 1/6 - ... - 1/2010 1/2012
A - B = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 +..... 1/2011 - 1/2012
A - B = 1/ 1.2 + 1/3.4 + 1/5.6 + .... + 1/2011. 2012
A - B = 1 - 1 / 2012 = 2011 /2012 < 1
Vậy A - B < 1
a, \(p=\frac{x+y}{y+z}=\frac{\frac{a}{m}+\frac{b}{m}}{\frac{b}{m}+\frac{a+b}{m}}=\frac{\frac{a+b}{m}}{\frac{a+b^2}{m}}=\frac{a+b}{a+b^2}\)
\(\frac{\frac{1}{4}+\frac{1}{2}}{\frac{1}{2}+\frac{3}{4}}=\frac{\frac{1}{4}+\frac{2}{4}}{\frac{2}{4}+\frac{1+2}{4}}=\frac{1+2}{1+2^2}=\frac{3}{5}\)
Hok tốt !!!!!!!!!
Vì a,b tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{2}\) suy ra \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{15}=\frac{b}{10}\) (1)
a,c tỉ lệ nghịch với \(\frac{1}{5};\frac{1}{7}\) suy ra \(\frac{a}{5}=\frac{c}{7}\Rightarrow\frac{a}{15}=\frac{c}{21}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{15}=\frac{b}{10}=\frac{c}{21}\). Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{21}=\frac{a+b+c}{15+10+21}=\frac{184}{46}=4\)
\(\Rightarrow\begin{cases}\frac{a}{15}=4\Rightarrow a=4\cdot15=60\\\frac{b}{10}=4\Rightarrow b=4\cdot10=40\\\frac{c}{21}=4\Rightarrow c=4\cdot21=84\end{cases}\)
\(\Rightarrow M=a^2+b^2-c^2=60^2+40^2-84^2=-1856\)