Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Các ĐKXĐ tự tìm dùm mình hen :)
Ta có : \(D=\left(\frac{5}{x-\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}-3}\)
=> \(D=\left(\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{1}{\sqrt{x}+2}\right)\left(\sqrt{x}-3\right)\)
=> \(D=\left(\frac{5+\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\right)\left(\sqrt{x}-3\right)\)
=> \(D=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\right)\left(\sqrt{x}-3\right)\)
=> \(D=\left(\frac{1}{\sqrt{x}-3}\right)\left(\sqrt{x}-3\right)=1\)
Ta có : \(E=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{a-2\sqrt{a}+1}\)
=> \(E=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{\left(\sqrt{a}-1\right)^2}\)
=> \(E=\left(\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
=> \(E=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
( làm đến đây thôi câu còn lại bạn tự làm hen )
Ghét nhất mấy câu viết sai đề b, c sai rất nhiều bạn ới
đấy là mình đánh máy tính nên kéo dài hơi nhầm bạn ơi chứ không phải sai đề :))
c/\(P=\frac{\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}}{1-\frac{x+2}{x+\sqrt{x}+1}}\)\(\Leftrightarrow P=\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}:\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
\(\Leftrightarrow\frac{2\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)
Xét P-1 ta có \(\frac{2x+2\sqrt[]{x}+2-x\sqrt{x}+1}{x\sqrt{x}-1}=\frac{2x+2\sqrt{x}-x\sqrt{x}+3}{x\sqrt{x}-1}\)
với x<1 thì tử dương, mẫu âm, với x>1 thì tử âm và mẫu dương
Từ đó ta luuon có P-1\(\le0\RightarrowĐPCM\)
a/\(\Leftrightarrow x=\frac{5-\sqrt{5}}{1-\sqrt{5}}+\frac{5+\sqrt{5}}{1+\sqrt{5}}-\frac{25-5}{1-5}-1\)
\(\Leftrightarrow x=0+5-1\Leftrightarrow x=4\)
Thay vào B đc \(B=\frac{4+2}{4+2+1}=\frac{6}{7}\)
b/
1/ \(\sqrt{\frac{m}{1-2x+x^2}}\cdot\sqrt{\frac{4m-8mx+4mx^2}{81}}\)
\(=\sqrt{\frac{m}{\left(1-x\right)^2}}\cdot\sqrt{\frac{4m\left(1-2x+x^2\right)}{81}}\)
\(=\sqrt{\frac{m}{\left(1-x\right)^2}}\cdot\sqrt{\frac{4m\left(1-x\right)^2}{81}}\)
\(=\sqrt{\frac{m}{\left(1-x\right)^2}\cdot\frac{4m\left(1-x\right)^2}{81}}\)
\(=\sqrt{\frac{4m^2}{81}}=\sqrt{\frac{\left(2m\right)^2}{9^2}}=\frac{2\left|m\right|}{9}\)
3/\(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}\)
\(=\frac{a+b}{b^2}\sqrt{\frac{\left(ab^2\right)^2}{\left(a+b\right)^2}}\)
\(=\frac{a+b}{b^2}\cdot\frac{\left|a\right|b^2}{\left|a+b\right|}\)
TH1: \(\Rightarrow\frac{a+b}{b^2}\cdot\frac{\left|a\right|b^2}{-\left(a+b\right)}=-\left|a\right|\)
TH2: \(\Rightarrow\frac{a+b}{b^2}\cdot\frac{\left|a\right|b^2}{a+b}=\left|a\right|\)
2/\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\right)\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\frac{\sqrt{a}-a}{1-\sqrt{a}}\right)\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\frac{1-a\sqrt{a}+\sqrt{a}-a}{1}\cdot\frac{1-\sqrt{a}}{\left(1-a\right)^2}\)
\(=\frac{\left(1-a\sqrt{a}+\sqrt{a}-a\right)\cdot\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}\)
\(=\frac{1-a\sqrt{a}+\sqrt{a}-a-\sqrt{a}+a^2-a+a\sqrt{a}}{\left(1-a\right)^2}\)
\(=\frac{a^2-2a+1}{\left(1-a\right)^2}\)
\(=\frac{\left(a-1\right)^2}{\left(1-a\right)^2}=\frac{-\left(1-a\right)^2}{\left(1-a\right)^2}=-1\)
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)