Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để A có giá trị nguyên thì \(\sqrt{x-3}\) phải là ước của 5, ta có:
\(\sqrt{x-3}=1\Rightarrow x=4\) (nhận)
\(\sqrt{x-3}=-1\Rightarrow\) (loại)
\(\sqrt{x-3}=5\Rightarrow x=28\) (nhận)
\(\sqrt{x-3}=-5\Rightarrow\) (loại)
vậy ta có x = 4 và x = 28 thỏa mãn
a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)
Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)
Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành
\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)
\(\Rightarrow t=5t-10\)
\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)
\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)
\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)
Vậy \(x=\frac{9}{4}\)
\(P=\frac{2\sqrt{x}+3}{\sqrt{x}-2}=\frac{2\sqrt{x}-4+7}{\sqrt{x}-2}=\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)
=> \(\sqrt{x}-2\inƯ\left(7\right)\)= {- 7; - 1 ; 1 ; 7 }
\(\Rightarrow\sqrt{x}=\) { - 5; 1; 3 ; 9 }
\(\Rightarrow x=\) { 1 ; 3 }
Để A thuộc Z
=> A^2 thuộc Z
=> x-3+4/x-3 = 1+4/x-3 thuộc z
=> x-3 thuộc ước của 4 Giải ra
có lộn ko đây đâu phải bài lớp 7
ok
ĐK: căn bậc 2 của x-3 khác 0 suy ra x khác 3
để A có giá trị nguyên thì căn bậc 2 của x-3 phải thuộc Ư(5)
mà Ư(5)=(1;-1;5;-5)
ta có bảng sau
x 1 -1 5 -5
căn bậc hai của x-3 4 28
và tự tính nhé chắc là kết quả như vậy, nếu thấy đúng thì k mình nha