Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x3/x2--4.x+2/x-x-4xx-4/xx-2
Điều kiện x \(\ne\)+-2
Ý b c tự làm
a: Ta có: \(A=\left(\dfrac{4x}{\left(x-2\right)\left(x+2\right)}+\dfrac{2x-4}{x+2}\right)\cdot\dfrac{x+2}{2x}-\dfrac{2}{x-2}\)
\(=\dfrac{4x+2\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{2x}-\dfrac{2}{x-2}\)
\(=\dfrac{4x+2x^2-8x+8}{x-2}\cdot\dfrac{1}{2x}-\dfrac{2}{x-2}\)
\(=\dfrac{2x^2-12x+8}{2x\left(x-2\right)}-\dfrac{2}{x-2}\)
\(=\dfrac{2x^2-12x+8-4x}{2x\left(x-2\right)}=\dfrac{2x^2-16x+8}{2x\left(x-2\right)}\)
\(=\dfrac{x^2-8x+4}{x\left(x-2\right)}\)
b: Thay x=4 vào A, ta được:
\(A=\dfrac{4^2-8\cdot4+4}{4\cdot\left(4-2\right)}=\dfrac{-12}{4\cdot2}=\dfrac{-12}{8}=-\dfrac{3}{2}\)
a, \(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{x+2}\right)\left(\frac{2}{x}-1\right)\)
\(=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\left(\frac{2-x}{x}\right)\)
\(=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}=\frac{-4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=\frac{-4}{x+2}\)
b, Ta có : \(2x^2+x=0\Leftrightarrow x\left(2x+1\right)=0\Leftrightarrow x=0;-\frac{1}{2}\)
Thay x = 0 vào biểu thức A ta được : \(\frac{-4}{0+2}=\frac{-4}{2}=-2\)
Thay x = -1/2 vào biểu thức A ta được : \(\frac{-4}{-\frac{1}{2}+2}=\frac{-4}{\frac{3}{2}}=-\frac{2}{3}\)
c, Ta có : \(\frac{-4}{x+2}=\frac{1}{2}\Leftrightarrow-8=x+2\Leftrightarrow x=-10\)
d, Ta có : \(\frac{-4}{x+2}\)hay \(x+2\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)
\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)
\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)
b, Ta có : \(\left(x+5\right)^2-9x-45=0\)
\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)
TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)
c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)
\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )
e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )
TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)
Để A nguyên khi 2 - x chia hết cho 4 => 2 - x là B (4) là ( 0; 4; 8 ;....)
(+) 2 -x = 0 => x = 2
(+) 2 -x = 4 => x = -2
(+) 2 -x = 8 => x = -6
...........................
b, A^2 - 5A + 6 = 0
=> A^2 - 6A + A - 6 = 0
=> A(A - 6 ) + A-6 = 0
=> ( A + 1 )(A - 6 ) = 0
=> A = - 1 hoặc A = 6
(+) A = - 1 => (2-x) /4 = -1 => 2 - x = -4 => x = 6
(+) A = 6 tương tự