Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(A=\frac{1}{11}+\frac{1}{12}\)\(+\frac{1}{13}\)\(+....+\frac{1}{70}\)
CMR:\(\frac{4}{3}\)<A< 5/2
S = \(\frac{1}{5^2}+\frac{1}{9^2}+....+\frac{1}{405^2}+\frac{1}{409^2}\)
<=> S = \(\frac{1}{5\cdot5}+\frac{1}{9\cdot9}+....+\frac{1}{405\cdot405}+\frac{1}{409\cdot409}\)
=> S < \(\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+....+\frac{1}{405\cdot409}+\frac{1}{409\cdot413}\)
(Ta thấy các cơ số lũy thừa cách nhau 4 đơn vị nên ở mẫu biến đổi sao cho hai số cũng cách nhau 4 đơn vị thì sẽ đơn giản hơn)
=> 4S < \(\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+....+\frac{4}{405\cdot409}+\frac{4}{409\cdot413}\)
=> 4S < \(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{405}-\frac{1}{409}+\frac{1}{409}-\frac{1}{413}\)
(Vì hai số ở mẫu cách nhau 4 đơn vị nên ta nhân hai vế cho 4 thì lúc đó ta sẽ tách được hiệu hai phân số) ; (Cuối cùng đơn giản hết đi)
=> 4S < \(\frac{1}{5}-\frac{1}{413}\)
=> 4S < \(\frac{408}{2065}\approx0,2\)
=> S < \(0,05\)
Mà 0,05 < \(\frac{1}{12}\left(\frac{1}{12}\approx0,08\right)\)
Vậy S < \(\frac{1}{12}\)
Phân số \(\frac{n}{n+1}\) là phân số tối giản rồi bạn nhé