Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
\(\rightarrow\frac{A}{B}=\frac{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}^2}{\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)}=\frac{1}{\frac{1}{4}}=4\)
xin loi may anh tai tui moi lop 6 thui ha
\(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+..+\frac{1}{100^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+..+\frac{1}{\left(2.100\right)^2}\)
\(B=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+..+\frac{1}{2^2.100^2}=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+..+\frac{1}{2^2}.\frac{1}{100^2}\)
\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)=\frac{1}{4}.A\)
\(=>\frac{A}{B}=\frac{A}{\frac{A}{4}}=4\)
Ta có :
\(\frac{A}{B}=\frac{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}}{\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+......\frac{1}{200^2}}=\frac{4\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\right)}{\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}}=4\)
Vậy \(\frac{A}{B}=4\)
Ta có 4A=\(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)
Trừ 4A cho A ta được
3A = \(1-\frac{1}{2^{100}}\)=> 3A <1 => A<1/3 (đpcm)
Chúc bạn học tốt
Ta có :\(A=\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
\(2A=\frac{1}{2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
\(A=\frac{1}{2}-\frac{1}{2^{100}}\)
Lại có :
\(\frac{1}{3}=\frac{1}{2}-\frac{1}{6}\)
Vì \(\frac{1}{2^{100}}< \frac{1}{6}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2^{100}}>\frac{1}{2}-\frac{1}{6}\)
\(\Rightarrow A>\frac{1}{3}\)
Vậy \(A>\frac{1}{3}\)(ĐPCM)
Mai Thanh Hoàng: You are right!