\(\dfrac{x^2-6x+9}{5x^2-45}\)

a, Tìm ĐKXĐ

b, Rút gọn A

c, Tí...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

a, ĐKXĐ:\(5x^2-45\ne0\Rightarrow x^2-9\ne0\Rightarrow x\ne\pm3\)

b, \(\dfrac{x^2-6x+9}{5x^2-45}=\dfrac{\left(x-3\right)^2}{5\left(x^2-9\right)}=\dfrac{\left(x-3\right)^2}{5\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{5\left(x+3\right)}=\dfrac{x-3}{5x+15}\)

\(c,A=-\dfrac{2}{3}\Rightarrow\dfrac{x-3}{5x+15}=\dfrac{-2}{3}\\ \Rightarrow-2\left(5x+15\right)=3\left(x-3\right)\\ \Rightarrow-10x-30=3x-9\\ \Rightarrow3x-9+10x+30=0\\ \Rightarrow13x+39=0\\ \Rightarrow13x=-39\\ \Rightarrow x=-3\)

a: \(A=\left(1+x+x^2-x\right):\dfrac{1-x^2}{x^3-x^2-x+1}\)

\(=\left(x^2+1\right)\cdot\dfrac{\left(x-1\right)\left(x^2-1\right)}{-\left(x^2-1\right)}=\left(1-x\right)\left(x^2+1\right)\)

b: Khi x=-5/3 thì \(A=\left(1+\dfrac{5}{3}\right)\left(\dfrac{25}{9}+1\right)=\dfrac{8}{3}\cdot\dfrac{34}{9}=\dfrac{272}{27}\)

c: Để A<0 thì 1-x<0

hay x>1

22 tháng 12 2017

a) \(x^3-\dfrac{1}{4}x=0\)

\(x.\left(x^2-\dfrac{1}{4}\right)=0\)

\(x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)

⇔ x = 0 hoặc \(x=\dfrac{1}{2}\) hoặc \(x=\dfrac{-1}{2}\)

b) (2x - 1)2 - (x + 3)2 = 0

⇔ (2x - 1 - x - 3)(2x - 1 + x + 3) = 0

⇔ (x - 4)(3x +2) = 0

⇔ x = 4 hoặc \(x=\dfrac{-2}{3}\)

c) 2x2 - x - 6 = 0

⇔ 2x2 - 4x + 3x - 6 = 0

⇔ 2x(x - 2) + 3(x - 2) = 0

⇔ (x - 2) (2x + 3) = 0

⇔ x = 2 hoặc \(x=\dfrac{-3}{2}\)

22 tháng 12 2017

2)a.

\(B=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}\\ =\left(\dfrac{x\left(x^2+6x\right)-\left(x-6\right)\left(x^2-36\right)}{\left(x^2-36\right)\left(x^2+6x\right)}\right).\dfrac{x^2+6x}{2x-6}\\ =\dfrac{x^2\left(x+6\right)-\left(x-6\right)^2.\left(x+6\right)}{x^2-36}.\dfrac{1}{2x-6}\\ =\dfrac{\left(x+6\right)\left(x^2-\left(x-6\right)^2\right)}{x^2-36}.\dfrac{1}{2x-6}\\ =\dfrac{\left(x-x+6\right)\left(x+x-6\right)}{x-6}.\dfrac{1}{2x-6}\\ =\dfrac{6.\left(2x-6\right)}{x-6}.\dfrac{1}{2x-6}\\ =\dfrac{6}{x-6}\)

b)

\(x=2\Leftrightarrow B=\dfrac{6}{x-6}=\dfrac{6}{2-6}=\dfrac{6}{-4}=-\dfrac{3}{2}\)

a: \(B=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\dfrac{x+3-1}{x+3}\)

\(=\dfrac{3x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+2}\)

\(=\dfrac{3}{x-3}\)

b: |2x+1|=5

=>2x+1=5 hoặc 2x+1=-5

=>x=-3(loại) hoặc x=2(nhận)

Khi x=2 thì \(B=\dfrac{3}{2-3}=-3\)

c: Để B=-3/5 thì x-3=-5

=>x=-2(loại)

d: Để B<0 thì x-3<0

=>x<3

a: \(A=\dfrac{x^2-3x+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2-2x+21}{\left(x-3\right)\left(x+3\right)}\)

b: Khi x=-1/2 thì \(A=\dfrac{\dfrac{1}{4}+1+21}{\dfrac{1}{4}-9}=-\dfrac{89}{35}\)

c: Để A=4 thì \(4x^2-36=x^2-2x+21\)

=>3x^2+2x-57=0

=>\(x=\dfrac{-1\pm2\sqrt{43}}{3}\)

9 tháng 11 2018

a) ĐK \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\\x\ne0\end{matrix}\right.\)

b) \(A=\left(\dfrac{x}{x-3}-\dfrac{x}{x+3}\right).\dfrac{x^2+6x+9}{6x}\)

\(A=\dfrac{x\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-3\right)^2}{6x}\)

\(A=\dfrac{6x}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-3\right)^2}{6x}=\dfrac{x-3}{x+3}\)

c) \(A=\dfrac{x-3}{x+3}=\dfrac{x+3-6}{x+3}=1-\dfrac{6}{x+3}\)

Để A nguyên khi \(6⋮\left(x+3\right)\Rightarrow\left(x+3\right)\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

Để A là nguyên dương thì \(\dfrac{6}{x+3}< 1\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=-1\\x+3=-2\\x+3=-3\\x+3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-5\\x=-6\\x=-9\end{matrix}\right.\)

a: \(A=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)

\(=\dfrac{4x}{\left(x+2\right)}\cdot\dfrac{-1}{x}=\dfrac{-4}{x+2}\)

b: 2x^2+x=0

=>x(2x+1)=0

=>x=0(loại) hoặc x=-1/2(nhận)

Khi x=-1/2 thì \(A=-4:\left(-\dfrac{1}{2}+2\right)=-4:\dfrac{3}{2}=-4\cdot\dfrac{2}{3}=-\dfrac{8}{3}\)

c: Để A=1/2 thì -4/x+2=1/2

=>x+2=-2

=>x=-4

26 tháng 2 2018

\(M=\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(M=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)

\(M=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2}{\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{6}{x+2}\right)\)

a) dkxd : x khac {0;1;-2)

\(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{\left(x-2\right)}+\dfrac{1}{x+2}\right).\left(\dfrac{x+2}{6}\right)\)

\(M=\left(\dfrac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x-1\right)\left(x+2\right)}\right).\left(\dfrac{x+2}{6}\right)=\dfrac{-6}{6\left(x-2\right)}=\dfrac{1}{2-x}\)

b)

GTLN M =1 khi x =1

29 tháng 11 2022

a: \(B=\left(\dfrac{4x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{4\left(x^2-2x+4\right)}{\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)

\(=\left(\dfrac{4x}{x+2}-\dfrac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)

\(=\dfrac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}\cdot\dfrac{\left(x+2\right)^2\cdot\left(x+1\right)}{16\left(x^2+x+1\right)}\)

\(=\dfrac{-16}{16\left(x^2+x+1\right)}\cdot\left(x+1\right)=-\dfrac{x+1}{x^2+x+1}\)

b: \(B=\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x+2}{x^2+x+1}\)

\(P=A+B=\dfrac{-x-1+x+2}{x^2+x+1}=\dfrac{1}{x^2+x+1}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< =1:\dfrac{3}{4}=\dfrac{4}{3}\)

Dấu = xảy ra khi x=-1/2

a: \(A=\dfrac{x^2+x+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\dfrac{x^2+2x}{\left(x-1\right)}\cdot\dfrac{x+1}{2x+1}\)

\(=\dfrac{\left(x^2+2\right)\left(x+1\right)}{\left(2x+1\right)\left(x-1\right)}\)

b: Khi x=2 thì \(A=\dfrac{\left(4+2\right)\left(2+1\right)}{\left(2\cdot2+1\right)\left(2-1\right)}=\dfrac{18}{5}\)