K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Giải:

Ta có: \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)

Đặt \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=k\Rightarrow\left[\begin{matrix}a=k\\b=2k\\c=3k\end{matrix}\right.\)

Lại có: \(A=\frac{5a+2b+8c}{-7a-4b+6c}=\frac{5k+4k+24k}{-7k-8k+18k}\)

\(=\frac{33k}{3k}=11\)

Vậy A = 11

2 tháng 3 2017

vòng mấy vậy bạn

13 tháng 2 2017

\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{5a}{5}=\frac{2b}{4}=\frac{8c}{24}=\frac{5a+2b+8c}{5+4+24}\)(*)

\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{-3a}{-3}=\frac{-4b}{-8}=\frac{6c}{18}=\frac{-3a-4b+6c}{-3-8+18}\)(**)

Lấy (*) chia cho (**) được kết quả: A=\(\frac{7}{33}\)

21 tháng 4 2017

Giải:

Ta có: \(\dfrac{a}{b}=\dfrac{-2}{3}\Rightarrow\dfrac{a}{-2}=\dfrac{b}{3}\)

Đặt \(\dfrac{a}{-2}=\dfrac{b}{3}=k\Rightarrow\left\{{}\begin{matrix}a=-2k\\b=3k\end{matrix}\right.\)

\(M=\dfrac{5a+2b}{3a-4b}=\dfrac{-10k+6k}{-6k-12k}=\dfrac{-4k}{-18k}=\dfrac{2}{9}\)

Vậy \(M=\dfrac{2}{9}\)

21 tháng 4 2017

Từ \(\dfrac{a}{b}=\dfrac{-2}{3}\Rightarrow\dfrac{a}{-2}=\dfrac{b}{3}\)

Đặt \(\dfrac{a}{-2}=\dfrac{b}{3}=k\)

\(\Rightarrow a=-2k\) ; \(b=3k\)

Thay a=-2k và b = 3k vào M , ta có :

\(\dfrac{5.\left(-2\right)k+2.3k}{3.\left(-2\right)k-3.3k}=\dfrac{-10k+6k}{-6k-9k}=\dfrac{k\left(-10+6\right)}{k\left(-6-9\right)}=\dfrac{-4}{-15}=\dfrac{4}{15}\)Vậy...

9 tháng 1 2018

ok ban

đúng rồi

30 tháng 11 2017

từ \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=k=>\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

ta có:\(\dfrac{5a+3b}{7a-2b}=\dfrac{5.ck+3.dk}{7.ck-2.dk}=\dfrac{k.\left(5c+3d\right)}{k.\left(7c-2d\right)}=\dfrac{5c+3d}{7c-2d}\)Vậy \(\dfrac{5a+3b}{7a-2b}=\dfrac{5c+3d}{7c-2d}\left(đpcm\right)\)

b) từ \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=k=>\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

ta có:\(\dfrac{7a^2+3ab}{11a^2+8.b^2}=\dfrac{7.c^2.k^2+3.c.d.k^2}{11.c^2.k^2+8.d^2.k^2}=\dfrac{k^2.\left(7.c^2+3.c.d\right)}{k^{2.}\left(11.c^2+8.d^2\right)}\) vậy .......

c)\(từ\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

=>\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\dfrac{a+b}{c+d}\right)^2\)(1)

Mặt khác:\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\left(2\right)\)

Từ (1).(2)=>......

1 tháng 10 2017

Nhấn vào đây

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)

<=>\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{3a}{3c}=\dfrac{2b}{2d}\)

<=>\(\dfrac{5a-3b}{5c-3d}=\dfrac{3a-2b}{3c-2d}\)(đpcm)

Các câu sau tương tự

N
4 tháng 9 2017

Nguyễn Thị Hồng Nhung chị làm bài f đc ko ạ ???

19 tháng 8 2017

bài 2 : a) \(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}\)

áp dụng dảy tỉ số bằng nhau

ta có : \(\dfrac{5\left(a-1\right)-3\left(b+3\right)-4\left(c-5\right)}{5.2-3.4-4.6}\)

\(=\dfrac{5a-5-3b-9-4c+20}{10-12-24}=\dfrac{\left(5a-3b-4c\right)-5-9+20}{-26}\)

\(=\dfrac{46+6}{-26}=\dfrac{52}{-26}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-1}{2}=-2\\\dfrac{b+3}{4}=-2\\\dfrac{c-5}{6}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a-1=-4\\b+3=-8\\c-5=-12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-11\\c=-7\end{matrix}\right.\)

vậy \(a=-3;b=-11;c=-7\)

b) ta có : \(3a=2b\Leftrightarrow6a=4b=5c\Leftrightarrow\dfrac{6a}{2}=\dfrac{4b}{2}=\dfrac{5c}{2}\)

áp dụng dảy tỉ số bằng nhau

ta có \(\dfrac{-60a-60b+60c}{-10.2-15.2+12.2}=\dfrac{60\left(-a-b+c\right)}{-20-30+24}\)

\(=\dfrac{60\left(-52\right)}{-26}=\dfrac{-3120}{-26}=120\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{6a}{2}=120\\\dfrac{4b}{2}=120\\\dfrac{5c}{2}=120\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6a=240\\4b=240\\5c=240\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=40\\b=60\\c=48\end{matrix}\right.\)

vậy \(a=40;b=60;c=48\)

27 tháng 11 2016

Ta có :

a:b:c=3:4:5

\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

\(\Rightarrow\begin{cases}a=3k\\b=4k\\c=5k\end{cases}\)

Thay vào biểu thức ta được :

\(\frac{5a^2+2b^2-c^2}{2a^2+3b^2-2c^2}=\frac{5.9.k^2+2.16.k^2-25.k^2}{2.9.k^2+3.16.k^2-2.25.k^2}=\frac{k^2\left(45+32-25\right)}{k^2\left(18+48-50\right)}=\frac{52}{16}=\frac{13}{4}\)

cam on nhe

 

8 tháng 11 2016

a/ Ta có \(a\left(2a-5c\right)=2a^2-5ac=2bc-5ac=c\left(2b-5a\right)\Rightarrow\frac{c}{2a-5c}=\frac{a}{2b-5a}\)

Các câu khác làm tương tự