Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4,5:\left[\left(\dfrac{9-10}{6}\right)-\dfrac{9}{5}+\dfrac{12}{5}\right]-\dfrac{1}{7}\)
\(=4,5:\left(\dfrac{-1}{6}-\dfrac{-3}{5}\right)-\dfrac{1}{7}\)
=\(4,5:\left(\dfrac{-5+18}{30}\right)-\dfrac{1}{7}\)
=\(4,5:\dfrac{13}{30}-\dfrac{1}{7}\)=\(\dfrac{135}{13}-\dfrac{1}{7}=\dfrac{932}{91}\)
b) \(\dfrac{13}{3}:\left(\dfrac{1}{4}+\dfrac{5}{4}\right)-\dfrac{20}{3}\)
=\(\dfrac{13}{3}.\dfrac{2}{3}-\dfrac{20}{3}\)=\(\dfrac{26}{9}-\dfrac{20}{3}=\dfrac{26}{9}-\dfrac{60}{9}=\dfrac{-34}{9}\)
c) \(5.\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+.....+\dfrac{1}{91.94}\right)\)
\(=5.\left[\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{91}-\dfrac{1}{94}\right)\right]\)
\(=5.\left[\dfrac{1}{3}.\left(1-\dfrac{1}{94}\right)\right]\)
=\(5.\left(\dfrac{1}{3}.\dfrac{93}{94}\right)\)
\(=5.\dfrac{31}{94}=\dfrac{155}{94}\)
Chúc bạn học tốt
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n\left(n+3\right)}\)
\(\Rightarrow S=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{\left(n+3\right)-n}{n\left(n+3\right)}\)
\(\Rightarrow S=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{n+3}{n\left(n+3\right)}-\dfrac{n}{n\left(n+3\right)}\)
\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\)
\(\Rightarrow S=1-\dfrac{1}{n+3}< 1\Rightarrow S< 1\)
Vậy S < 1
tìm x a)
\(\dfrac{7}{2}\)-\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{4}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{4}\) + \(\dfrac{7}{2}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{12}+\dfrac{7}{12}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-12}{12}=1\)
\(x+\dfrac{7}{10}\)= 1 . \(\dfrac{6}{5}\)
*Rồi tự làm phần tt đi
A=1/15-1/16+1/16-1/17+...+1/2016-1/2017
A=1/15-1/2017
A=2002/30255
C=1/3[3/5.8+3/8.11+...+3/101.104]
C=1/3[1/5-1/8+1/8-1/11+...+1/101-1/104]
C=1/3[1/5-1/104]
C=1/3.99/520
C=33/520
Bài 1:
a) \(\dfrac{2}{5}\cdot x-\dfrac{1}{4}=\dfrac{1}{10}\)
\(\dfrac{2}{5}\cdot x=\dfrac{1}{10}+\dfrac{1}{4}\)
\(\dfrac{2}{5}\cdot x=\dfrac{7}{20}\)
\(x=\dfrac{7}{20}:\dfrac{2}{5}\)
\(x=\dfrac{7}{8}\)
Vậy \(x=\dfrac{7}{8}\).
b) \(\dfrac{3}{5}=\dfrac{24}{x}\)
\(x=\dfrac{5\cdot24}{3}\)
\(x=40\)
Vậy \(x=40\).
c) \(\left(2x-3\right)^2=16\)
\(\left(2x-3\right)^2=4^2\)
\(\circledast\)TH1: \(2x-3=4\\ 2x=4+3\\ 2x=7\\ x=\dfrac{7}{2}\)
\(\circledast\)TH2: \(2x-3=-4\\ 2x=-4+3\\ 2x=-1\\ x=\dfrac{-1}{2}\)
Vậy \(x\in\left\{\dfrac{7}{2};\dfrac{-1}{2}\right\}\).
Bài 2:
a) \(25\%-4\dfrac{2}{5}+0.3:\dfrac{6}{5}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}:\dfrac{6}{5}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}\cdot\dfrac{5}{6}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{1}{4}\)
\(=\dfrac{5}{20}-\dfrac{88}{20}+\dfrac{5}{20}\)
\(=\dfrac{5-88+5}{20}\)
\(=\dfrac{78}{20}=\dfrac{39}{10}\)
b) \(\left(\dfrac{1}{6}-\dfrac{1}{5^2}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{1}{6}-\dfrac{1}{25}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{1}{6}-\dfrac{1}{5}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{5}{30}-\dfrac{6}{30}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{5-6+1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=0\cdot\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=0\)
Bài 3:
a) \(\dfrac{4}{19}\cdot\dfrac{-3}{7}+\dfrac{-3}{7}\cdot\dfrac{15}{19}\)
\(=\dfrac{-3}{7}\left(\dfrac{4}{19}+\dfrac{15}{19}\right)\)
\(=\dfrac{-3}{7}\cdot1\)
\(=\dfrac{-3}{7}\)
b) \(7\dfrac{5}{9}-\left(2\dfrac{3}{4}+3\dfrac{5}{9}\right)\)
\(=\dfrac{68}{9}-\dfrac{11}{4}-\dfrac{32}{9}\)
\(=\dfrac{68}{9}-\dfrac{32}{9}-\dfrac{11}{4}\)
\(=4-\dfrac{11}{4}\)
\(=\dfrac{16}{4}-\dfrac{11}{4}\)
\(\dfrac{5}{4}\)
Bài 4:
\(\dfrac{4}{12\cdot14}+\dfrac{4}{14\cdot16}+\dfrac{4}{16\cdot18}+...+\dfrac{4}{58\cdot60}\)
\(=2\left(\dfrac{1}{12\cdot14}+\dfrac{1}{14\cdot16}+\dfrac{1}{16\cdot18}+...+\dfrac{1}{58\cdot60}\right)\)
\(=2\left(\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{18}+...+\dfrac{1}{58}-\dfrac{1}{60}\right)\)
\(=2\left(\dfrac{1}{12}-\dfrac{1}{60}\right)\)
\(=2\left(\dfrac{5}{60}-\dfrac{1}{60}\right)\)
\(=2\cdot\dfrac{1}{15}\)
\(=\dfrac{2}{15}\)
Viết thành lũy thừa các tích sau:
\(1,\left(\dfrac{1}{2}\right)^6\)
2, \(\left(1\dfrac{1}{2}\right)^3\)
3, \(\left(\dfrac{-3x}{5}\right)^4\)
Chúc bạn học tốt!!!
a: \(\Leftrightarrow x\cdot\dfrac{1}{2}-\dfrac{3}{5}x+\dfrac{13}{5}=-\dfrac{7}{5}-\dfrac{7}{10}x\)
=>3/5x=-4
hay x=-4:3/5=-20/3
b: \(\Leftrightarrow4x-6-9=5-3x-2\)
=>4x-15=-3x+3
=>7x=18
hay x=18/7
\(A=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{\left(3x+1\right).\left(3x+4\right)}\)=\(\dfrac{1344}{2017}\)
\(A=\dfrac{2}{3}(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{3x+1}-\dfrac{1}{3x+4}\))=\(\dfrac{1344}{2017}\)
\(A=\dfrac{2}{3}(1-\dfrac{1}{3x+4})\)=\(\dfrac{1344}{2017}\)
\(A=1-\dfrac{1}{3x+4}=\dfrac{1344}{2017}:\dfrac{2}{3}\)
\(A=1-\dfrac{1}{3x+4}=\dfrac{2016}{2017}\)
\(A=\dfrac{1}{3x+4}=1-\dfrac{2016}{2017}\)
\(A=\dfrac{1}{3x+4}=\dfrac{1}{2017}\)
\(\Rightarrow\)\(3x+4=2017\)
\(3x=2017-4\)
\(3x=2013\)
\(x=671\)
\(\Leftrightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\)
\(\rightarrowđpcm\)
Mik cần từ lâu òi , pn trả lời muộn quá !! Nhưng cảm ơn pn na !!!