Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a+2/b+2 = a/b+2 + 2/b+2 = a(b+2)/b+2 + 2(b+2)/b+2 = a+2
Do a+2 > a/b => a+2/b+2 >a/b
mik làm đại ko bik đúng hay sai đâu nha
Xét tích : \(a\left(b+2\right)=ab+2a\)
\(b\left(a+2\right)=ab+2b\)
Nếu \(a>b\)thì \(ab+2a>ab+2b\)
hay \(a\left(b+2\right)>b\left(a+2\right)\)
\(\Rightarrow\frac{a}{b}>\frac{a+2}{b+2}\)
Nếu \(a< b\)thì \(ab+2a< ab+2b\)
hay \(a\left(b+2\right)< b\left(a+2\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+2}{b+2}\)
Nếu \(a=b\)thì \(ab+2a=ab+2b\)
hay \(a\left(b+2\right)=b\left(a+2\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a+2}{b+2}\)
Ta có:\(\frac{-157}{623}=\frac{-331441}{132699}\)
\(\frac{-47}{213}=\frac{-29281}{132699}\)
Vì \(-331441< -29281\)nên\(\frac{-331441}{132699}< \frac{-29281}{132699}\)
hay\(\frac{-157}{623}< \frac{-47}{213}\)
Vậy \(\frac{-157}{623}< \frac{-47}{213}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)\(\dfrac{a+b-c}{c}=1\Leftrightarrow\dfrac{a+b}{c}-\dfrac{c}{c}=1\Leftrightarrow\dfrac{a+b}{c}-1=1\Leftrightarrow\dfrac{a+b}{c}=2\)\(\dfrac{b+c-a}{a}=1\Leftrightarrow\dfrac{b+c}{a}-\dfrac{a}{a}=1\Leftrightarrow\dfrac{b+c}{a}-1=1\Leftrightarrow\dfrac{b+c}{a}=2\)\(\dfrac{c+a-b}{b}=1\Leftrightarrow\dfrac{c+a}{b}-\dfrac{b}{b}=1\Leftrightarrow\dfrac{c+a}{b}-1=1\Leftrightarrow\dfrac{c+a}{b}=2\)\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\\ =\dfrac{a+b}{a}\cdot\dfrac{b+c}{b}\cdot\dfrac{c+a}{c}\\ =\left(a+b\right)\cdot\dfrac{1}{a}\cdot\left(b+c\right)\cdot\dfrac{1}{b}\cdot\left(c+a\right)\cdot\dfrac{1}{c}\\ =\left(a+b\right)\cdot\dfrac{1}{c}\cdot\left(b+c\right)\cdot\dfrac{1}{a}\cdot\left(c+a\right)\cdot\dfrac{1}{b}\\ =\dfrac{a+b}{c}\cdot\dfrac{b+c}{a}\cdot\dfrac{c+a}{b}\\ =2\cdot2\cdot2\\ =8\)
Vậy \(P=8\)
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
\(A=\dfrac{15\left(1+2\cdot4+64\right)}{35+240+2240}\)
\(=\dfrac{15\cdot73}{2515}=\dfrac{15\cdot73}{5\cdot503}=\dfrac{3\cdot73}{503}=\dfrac{219}{503}>\dfrac{3}{8}\)