K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

à mk nhầm thay 50 * b thành a nha

23 tháng 5 2017

Đề sai à???

Đáng ra phải là \(\dfrac{A}{B}\) chứ???

Với cả nếu muốn CM biểu thức ko là số tự nhiên thì chỉ cần có 1 biểu thức thui chứ nhỉ, cần j 2???

mk nhầm các bn thay50 * b thành A nha

27 tháng 4 2023

Giúp mình với mình đang cần gấp!!!

 

27 tháng 4 2023

=> D + 49 = (1/49 + 1) + (2/48 + 1) +... (49/1 + 1)

= 50/1 + 50/2 + ... + 50/49

= 50(1/2+1/3+...+1/49) + 50

=> D = 50(1/2 + 1/3 +... + 1/49) + 1

= 50(1/2 + 1/3 +... + 1/49 + 1/50)

=> C/D = 1/50

16 tháng 3 2018

\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(P=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)

\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)

\(P=50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)

11 tháng 5 2017

\(Q=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{47}{3}+\dfrac{48}{2}+\dfrac{49}{1}\\ =\dfrac{1}{49}+1+\dfrac{2}{48}+1+\dfrac{3}{47}+1+...+\dfrac{47}{3}+1+\dfrac{48}{2}+1+1\\ =\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{3}+\dfrac{50}{2}+\dfrac{50}{50}\\ =50\cdot\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+...+\dfrac{1}{3}+\dfrac{1}{2}\right)\\ =50\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

\(\dfrac{P}{Q}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}}{50\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)

12 tháng 5 2017

bn thiếu dấu ngoặc ở phép thứ 2 rồi

21 tháng 3 2017

Ta có: \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(P=\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+\left(1+\dfrac{3}{47}\right)+...+\left(1+\dfrac{48}{2}\right)+1\)

\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)

\(P=50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(\Rightarrow\)\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}\)\(=\dfrac{1}{50}\)

4 tháng 5 2018

Giúp vớikhocroi

18 tháng 7 2018

Ta có:

P= \(\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

P= \(\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\left(1+1+...+1\right)\)(có 49 chữ số 1)

P= \(\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)

P= \(\dfrac{50}{49}+\dfrac{50}{48}+...+\dfrac{50}{2}+\dfrac{50}{50}\)

P= \(50.\left(\dfrac{1}{50}+\dfrac{1}{49}+...+\dfrac{1}{2}\right)\)

\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}}{50.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)}\)

\(\dfrac{S}{P}=\dfrac{1}{50}\)

Vậy \(\dfrac{S}{P}=\dfrac{1}{50}\)

5 tháng 5 2018

P = 1/49+2/48+3/47+...+48/2+49/1

Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta được

P=(1/49+1)+(2/48+1)+...+(48/2+1)+1

P= 50/49+50/48+....+50/2+50/50

Đưa ps cuối lên đầu

P=50/50+50/49+50/48+...+50/2

=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)

=50S

=> S/P=1/50

10 tháng 3 2019

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2n}\right)=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2n-1}+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}\right)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n-1}+\frac{1}{2n}-\frac{1}{1}-\frac{1}{2}-....-\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}\left(\text{đpcm}\right)\)

23 tháng 4 2017

a. Ta có: \(\dfrac{1}{21}>\dfrac{1}{40};\dfrac{1}{22}>\dfrac{1}{40};...;\dfrac{1}{40}=\dfrac{1}{40}\)

\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}\)(20 số hạng vì A có 20 số hạng)

\(\Rightarrow A>\dfrac{1}{40}.20\)

\(\Rightarrow A>\dfrac{1}{2}\left(1\right)\)

Ta lại có: \(\dfrac{1}{21}< \dfrac{1}{20};\dfrac{1}{22}< \dfrac{1}{20};...;\dfrac{1}{40}< \dfrac{1}{20}\)

\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{40}< \dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\) (20 số hạng)

\(\Rightarrow A< \dfrac{1}{20}.20\)

\(\Rightarrow A< 1\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\) ta suy ra \(\dfrac{1}{2}< A< 1\)

23 tháng 4 2017

b.Ta có: Đặt \(A=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(B=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)\(\Rightarrow B=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(\Rightarrow B=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(\Rightarrow B=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(\Rightarrow B=\dfrac{1}{25}+\dfrac{1}{26}+...+\dfrac{1}{50}=A\)

\(\Rightarrow B=A\left(đpcm\right)\)