Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt B=99/1+99/2+...+1/99
=1+(98/2+1)+(97/3+1)+...+(1/99+1)
=100/100+100/2+...+100/99
=100.(1/2+1/3+...+1/100)
=>A=(1/2+1/3+...+1/100):[100.(1/2+1/3+...+1/100)]
A=1:100=1/100
hok tốt nha
Đặt a/2003 = b/2004 = c/2005 = k
=> a=2003k
b=2004k
c=2005k
Thay các giá trị a,b,c trên vào 4(a-b)(b-c) = (c-a)2.Ta có:
4(a-b)(b-c)=4(2003k - 2004k)(2004k-2005k)=4.(-1k).(-1k)=4k2 (1)
(c-a)2 =(2005k-2003k)2=(2k)2= 4k2 (2)
Từ (1) và (2) suy ra 4(a-b)(b-c) = (c-a)2
(k) đúng cho mình nhé!
nhưng sao cách giải bài
này lai thế mình
có cách giải khác
mà tuy ko giống nhưng giống
kết qyar
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
=> cd(a2 + b2) = ab(c2 + d2)
=> a2cd + b2cd = abc2 + abd2
=> a2cd + b2cd - abc2 - abd2 = 0
=> (a2cd - abc2) + (b2cd - abd2) = 0
=> ac(ad - bc) + bd(bc - ad) = 0
=> ac(ad - bc) - bd(ad - bc) = 0
=> (ac - bd)(ad - bc) = 0
=> \(\orbr{\begin{cases}ac-bd=0\\ad-bc=0\end{cases}}\Rightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\Rightarrow\text{đpcm}\)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)
\(d^2=ce\Rightarrow\frac{c}{d}=\frac{d}{e}\) (3)
\(e^2=dg\Rightarrow\frac{d}{e}=\frac{e}{g}\) (4)
Từ (1),(2),(3),(4) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{g}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{g}=\frac{a+b+c+d+e}{b+c+d+e+g}\)
Ta có: \(\frac{a}{b}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (5)
\(\frac{b}{c}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (6)
\(\frac{c}{d}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (7)
\(\frac{d}{e}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (8)
\(\frac{e}{g}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (9)
Nhân (5),(6),(7),(8),(9) vế với vế:
\(\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}\cdot\frac{d}{e}\cdot\frac{e}{g}=\frac{a}{g}=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^5\) (đpcm)
P/s: Mk nghĩ đề là c/m: a/g = (a+b+c+d+e/b+c+d+e+g)^5
Áp dụng công thức tỉ lệ phân số ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)
ta có: \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{2003.a^2}{2003.b^2}=\frac{2004.c^2}{2004.d^2}\) (*)
mà \(\frac{2003.a^2}{2003.b^2}=\frac{2004.c^2}{2004.d^2}=\frac{2003.a^2+2004.c^2}{2003.b^2+2004.d^2}\)
Từ (*) \(\Rightarrow\frac{a^2}{b^2}=\frac{2003.a^2+2004.c^2}{2003.b^2+2004.d^2}\)
\(\Rightarrow\frac{2003.b^2+2004.d^2}{b^2}=\frac{2003.a^2+2004.c^2}{a^2}\left(đpcm\right)\)