Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(a+b=c+d\)
\(\Rightarrow\)\(a=-b+c+d\)
Thay \(a=-b+c+d\) vào \(ab+1=cd\) ta được :
\(\left(-b+c+d\right)b+1=cd\)
\(\Leftrightarrow\)\(-b^2+bc+bd+1=cd\)
\(\Leftrightarrow\)\(\left(-b^2+bd\right)+\left(bc-cd\right)=-1\)
\(\Leftrightarrow\)\(-b\left(b-d\right)+c\left(b-d\right)=-1\)
\(\Leftrightarrow\)\(\left(c-b\right)\left(b-d\right)=-1\)
Vì \(a,b,c,d\inℤ\) nên có 2 trường hợp :
Trường hợp 1 :
\(\hept{\begin{cases}c-b=1\\b-d=-1\end{cases}\Leftrightarrow\hept{\begin{cases}c=b+1\\b+1=d\end{cases}\Leftrightarrow}\hept{\begin{cases}c=b+1\\c=d\end{cases}}}\)
\(\Rightarrow\)\(c=d\)
Trường hợp 2 :
\(\hept{\begin{cases}c-b=-1\\b-d=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=c+1\\b=d+1\end{cases}}}\)
\(\Rightarrow\)\(c+1=d+1\)
\(\Rightarrow\)\(c=d\)
Vậy \(c=d\)
Chúc bạn học tốt ~