K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

Ta có :

\(a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2+b^2-ab\right)\)

\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)\)

\(=0.\left(a^2-ab+b^2\right)=0\left(đ\text{pcm}\right)\)

24 tháng 1 2022

- Tham khảo sai rồi bé à.

18 tháng 3 2022

\(\dfrac{1}{a^2+b^2-c^2}+\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}\)

\(=\dfrac{1}{a^2+b^2-\left(-a-b\right)^2}+\dfrac{1}{b^2+c^2-\left(-b-c\right)^2}+\dfrac{1}{c^2+a^2-\left(-c-a\right)^2}\)

\(=\dfrac{1}{a^2+b^2-\left(a+b\right)^2}+\dfrac{1}{b^2+c^2-\left(b+c\right)^2}+\dfrac{1}{c^2+a^2-\left(c+a\right)^2}\)

\(=\dfrac{1}{a^2+b^2-a^2-2ab-b^2}+\dfrac{1}{b^2+c^2-b^2-2bc-c^2}+\dfrac{1}{c^2+a^2-c^2-2ac-a^2}\)

\(=\dfrac{1}{-2ab}+\dfrac{1}{-2bc}+\dfrac{1}{-2ac}\)

\(=\dfrac{c+a+b}{-2abc}=\dfrac{0}{-2abc}=0\)

18 tháng 3 2022

ta có a+b+c=0=>a+b=-c =>(a+b)^2=c^2=> a^2+b^2=c^2-2ab =>a^2+b^2-c^2=-2ab
tương tự ta sẽ có

-1/2ab-1/2bc-1/2ac =-c/2abc- a/2abc- b/2abc =0 (vì a+b+c=0)

6 tháng 7 2016

ta có 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\Rightarrow c\left(a+b\right)=-ab\Rightarrow a+b=-\frac{ab}{c}\)

CMTT:

\(a+c=-\frac{ac}{b}\)

\(b+c=-\frac{bc}{a}\)

Thay vào biểu thức \(A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

\(\Rightarrow A=\frac{\left(-\frac{ab}{c}.-\frac{bc}{a}.-\frac{ac}{b}\right)}{abc}=-\frac{a^2b^2c^2}{a^2b^2c^2}=-1\)

T I C K ủng hộ nha mình cảm ơn

___________CHÚC BẠN HỌC TỐT NHA _____________________

6 tháng 9 2017

\(a^3+a^2c-abc+b^2c+b^3=0\)

\(=a^2.\left(a+b+c\right)-a^2b-abc+b^2c+b^3\)

\(=a^2.\left(a+b+c\right)+b^2.\left(a+b+c\right)-ab^2-abc-a^2b\)

\(=a^2.\left(a+b+c\right)+b^2.\left(a+b+c\right)-ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left(a^2-ab+b^2\right)\)

\(=0\) ( Đpcm )

6 tháng 4 2016

abc = 1 mới đúng nhớ, nếu đúng thế thì mình mới giải!