Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=\sqrt{6063}\Leftrightarrow\dfrac{a}{\sqrt{2021}}+\dfrac{b}{\sqrt{2021}}+\dfrac{c}{\sqrt{2021}}=\sqrt{3}\)
Đặt \(\left(\dfrac{a}{\sqrt{2021}};\dfrac{b}{\sqrt{2021}};\dfrac{c}{\sqrt{2021}}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{3}\)
\(P=\dfrac{2x}{\sqrt{2x^2+1}}+\dfrac{2y}{\sqrt{2y^2+1}}+\dfrac{2z}{\sqrt{2z^2+1}}\)
Ta có đánh giá:
\(\dfrac{x}{\sqrt{2x^2+1}}\le\dfrac{3\sqrt{15}x+2\sqrt{5}}{25}\)
Thật vậy, BĐT tương đương:
\(\left(\sqrt{3}x-1\right)^2\left(9x^2+10\sqrt{3}x+2\right)\ge0\) (luôn đúng)
Tương tự và cộng lại:
\(P\le\dfrac{6\sqrt{15}\left(x+y+z\right)+12\sqrt{5}}{25}=\dfrac{6\sqrt{5}}{5}\)
\(A=\dfrac{x-4+5}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{5}{\sqrt{x}-2}\)
\(=\sqrt{x}-2+\dfrac{5}{\sqrt{x}-2}+4\ge2\sqrt{\dfrac{5\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+4=4+2\sqrt{5}\)
\(A_{min}=4+2\sqrt{5}\) khi \(9+4\sqrt{5}\)
b.
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{l}{z}\right)\Rightarrow xyz=1\)
\(B=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(B_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\Rightarrow a=b=c=1\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)
Tương tự:
\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)
Cộng vế với vế:
\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)
Theo BĐT \(AM-GM\) ta có :
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}=\dfrac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\ge\dfrac{\sqrt{3}a^2}{\dfrac{2a^2+2b^2+2c^2}{2}}=\dfrac{\sqrt{3}a^2}{a^2+b^2+c^2}\)
Tương tự ta có :
\(\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}\ge\dfrac{\sqrt{3}b^2}{a^2+b^2+c^2}\)
\(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\dfrac{\sqrt{3}c^2}{a^2+b^2+c^2}\)
Cộng từng vế BĐT :
\(\Rightarrow VT\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
\("="\Leftrightarrow a=b=c\)
Vì vai trò của a,b,c là như nhau, giả sử
\(a\ge c\ge b>0\)
Ta có
\(a+b-c< a\)
\(\Leftrightarrow b-c\le0\) ( đúng với gt )
\(\Rightarrow a+b-c< a\)
\(\Leftrightarrow\left(a+b-c\right)^2< a^2\)
\(\Leftrightarrow\dfrac{1}{\left(a+b-c\right)^2}\ge\dfrac{1}{a^2}\)
CMTT :
\(\dfrac{1}{\left(b+c-a\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{c^2}\)
Cộng vế với vế 3 BĐT trên , được
\(\dfrac{1}{\left(a+b-c\right)^2}+\dfrac{1}{\left(b+c-a\right)^2}+\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Ta có \(ab+bc+ca=3abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và
\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)
Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)
\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)
\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))
\(T\le\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)
Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)
(Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)
Bạn Lê Song Phương xem lại dùm nhé, thanks!
\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)
\(...\Rightarrow T\le2.3=6\)
\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)
\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)
CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Ta có:
\(\left(2a^2-b^2-c^2\right)^2\ge0\)
\(\Leftrightarrow4a^4+b^4+c^4-4a^2b^2-4a^2c^2+2b^2c^2\ge0\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge6a^2b^2+6a^2c^2-3a^4\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge3a^2\left(2b^2+2c^2-a^2\right)\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2b^2+2c^2-a^2}}\ge\dfrac{\sqrt{3}a}{a^2+b^2+c^2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}\ge\sqrt{3}\dfrac{a^2}{a^2+b^2+c^2}\)
Tương tự: \(\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}\ge\sqrt{3}.\dfrac{b^2}{a^2+b^2+c^2}\) ; \(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}.\dfrac{c^2}{a^2+b^2+c^2}\)
Cộng vế: \(P\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c\)