Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy - Schwarz và BĐT phụ \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\Rightarrow M^2=\left(\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\right)^2\)
\(\le\left(1+1+1\right)\left(\frac{a}{b+c+2a}+\frac{b}{c+a+2b}+\frac{c}{a+b+2c}\right)\)
\(\le\frac{3}{4}\left(\frac{a}{b+a}+\frac{a}{c+a}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}\right)\)
\(=\frac{3}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{9}{4}\)
\(\Rightarrow M\le\frac{3}{2}\)
Dấu "= " xảy ra \(\Leftrightarrow a=b=c\)
\(\frac{\sqrt{ab}}{a+b+2c}\le\frac{\sqrt{ab}}{2\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{4}\)
Tương tự cộng lại ta được:
\(F\le\frac{\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}}{4}=\frac{3}{4}\)
Dấu "=" xảy ra tại a=b=c
Ta có: \(4ab\le2a^2+2b^2\)
=> \(\sqrt{2a^2+7b^2+16ab}\le\sqrt{4a^2+9b^2+12ab}=\sqrt{\left(2a+3b\right)^2}=2a+3b\)
=> \(\frac{a^2}{\sqrt{2a^2+7b^2+16ab}}\ge\frac{a^2}{2a+3b}\)
Chứng minh tương tự
=> \(T\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)
Áp dụng bđt bunhia dạng phân thức
=> \(T\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=1\)
=> \(MinT=1\)xảy ra khi a=b=c=5/3
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)
Tương tự:
\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)
Cộng vế với vế:
\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)
Ta có :
\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{x+y}{xy}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT trên ta có :
\(A=\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\)
\(\Rightarrow A=\frac{a}{\left(a+b\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(b+c\right)}+\frac{c}{\left(c+a\right)+\left(b+c\right)}\)
\(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)
\(+\frac{1}{4}\left(\frac{c}{c+a}+\frac{c}{b+c}\right)\)
\(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{b+c}\right)\)
\(\Rightarrow A\le\frac{1}{4}\left(\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)\right)\)
\(\Rightarrow A\le\frac{1}{4}\left(1+1+1\right)\)
\(\Rightarrow A\le\frac{3}{4}\)
Dấu " = " xảy ra khi a=b=c
Ta có: \(A=\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\)
\(=\frac{a}{\left(a+b\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(b+c\right)}+\frac{c}{\left(a+c\right)+\left(b+c\right)}\)
\(\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(=\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}\right)=\frac{3}{4}\)
Dấu "=" xảy ra <=> a = b = c
Vậy max A = 3/4 đạt tại a= b = c .
b)
https://hoc24.vn/cau-hoi/c-voi-a-b-c-la-cac-so-duong-thoa-man-dieu-kien-a-b-c-2-tim-max-q-sqrt2abcsqrt2bcasqrt2cab.8298826302
Bạn có thể tham khảo ở đây. Đừng quên like giúp mik nha bạn. Thx
\(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)
\(=\sqrt{a\left(a+b+c\right)+bc}+\sqrt{b\left(a+b+c\right)+ca}+\sqrt{c\left(a+b+c\right)+ab}\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\le\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}+\frac{c+a+c+b}{2}\)
\(=2\left(a+b+c\right)=4\)
Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)