\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Áp dụng bất đẳng thức Cô - si (a, b, c) dương ta có:

+/ \(\sqrt{\dfrac{b+c}{a}}=\sqrt{\dfrac{b+c}{a}.1}\le(\dfrac{b+c}{a}+1):2=\dfrac{a+b+c}{2a}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

+/ \(\sqrt{\dfrac{a+c}{b}}=\sqrt{\dfrac{a+c}{b}.1}\le(\dfrac{a+c}{b}+1):2=\dfrac{a+b+c}{2b}\)

\(\Rightarrow\sqrt{\dfrac{b}{a+c}}\ge\dfrac{2b}{a+b+c}\)

+/ \(\sqrt{\dfrac{a+b}{c}}=\sqrt{\dfrac{a+b}{c}.1}\le(\dfrac{a+b}{c}+1):2=\dfrac{a+b+c}{2c}\)

\(\Rightarrow\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Khi đó:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2a+2b+2c}{a+b+c}=2\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=a+c\\c=a+b\end{matrix}\right.\)

\(\Leftrightarrow a+b+c=0\) (Trái với giả thiết a, b, c là 3 số dương)

=> Đẳng thức không xảy ra

=> \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>2\) (đpcm)

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

5 tháng 1 2018

Áp dụng BĐT phụ:

\(3\left(a^2+a^2+b^2\right)\ge\left(2a+b\right)^2\)

P=\(\sum\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P=\sum\dfrac{a}{\sqrt{3\left(a^2+a^2+b^2\right)}+3}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\sum\dfrac{a}{\sqrt{\left(2a+b\right)^2}+a+b+c}=\sum\dfrac{a}{3a+2b+c}\)

Xét M=\(\sum\dfrac{a}{3a+2b+c}\)

\(3-3M=\sum\dfrac{2b+c}{3a+2b+c}\)

\(\Rightarrow\)\(3-3M=\sum\dfrac{\left(2b+c\right)^2}{\left(3a+2b+c\right)\left(2b+c\right)}\ge\)\(\dfrac{\left(3a+3b+3c\right)^2}{\sum\left(3a+2b+c\right)\left(2b+c\right)}\)

\(\sum\left(3a+2b+c\right)\left(2b+c\right)=5a^2+5b^2+5c^2+13ab+13bc+13ac=5\left(a+b+c\right)^2+3\left(ab+bc+ac\right)\le5\left(a+b+c\right)^2+\left(a+b+c\right)^2\)

\(\Rightarrow\)\(3-3M\ge\dfrac{\left(3a+3b+3c\right)^2}{6\left(a+b+c\right)^2}\ge\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrow\)\(M\le\dfrac{1}{2}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\dfrac{1}{2}\Rightarrow P\le\dfrac{\sqrt{3}}{2}\)

5 tháng 1 2018

Dấu \(=\) xảy ra khi và chỉ khi x=y=z=1

21 tháng 7 2018

Chắc đề bị nhầm rồi.

\(\dfrac{a}{\sqrt{b+1}}+\dfrac{b}{\sqrt{c+1}}+\dfrac{c}{\sqrt{a+1}}\ge2\sqrt{2}\left(\dfrac{a}{3+b}+\dfrac{b}{3+c}+\dfrac{c}{3+a}\right)\)

\(\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{3\left(a+b+c\right)+\left(ab+bc+ca\right)}\ge2\sqrt{2}.\dfrac{9}{9+\dfrac{\left(a+b+c\right)^2}{3}}=2\sqrt{2}.\dfrac{9}{12}=\dfrac{3}{\sqrt{2}}\)

5 tháng 8 2018

uh, mk cx nghĩ zậy

3 tháng 11 2017

Ta có \(\Sigma\sqrt{\dfrac{a}{b+c}}=\Sigma\dfrac{a}{\sqrt{a\left(b+c\right)}}\)

Theo AM-GM ta có

\(\Sigma\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma\dfrac{a}{\dfrac{a+b+c}{2}}=\Sigma\dfrac{2a}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

dấu bằng xảy ra khi \(\left\{{}\begin{matrix}a=b+c\\b=a+c\\c=a+b\end{matrix}\right.\Rightarrow a+b+c=2\left(a+b+c\right)\Rightarrow1=2\) (vô lí)

nên\(\Sigma\sqrt{\dfrac{a}{b+c}}>2\)

3 tháng 11 2017

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}\ge2\sqrt{1+\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

26 tháng 10 2017

Theo bất đẳng thức cô si, có:

\(\sqrt{1.\dfrac{b+c}{a}}\le\left(1+\dfrac{b+c}{a}\right):2=\dfrac{a+b+c}{2a}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}~~~~~\left(1\right)\)

Tương tự: \(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c}~~~~~\left(2\right)\)

\(\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}~~~~~\left(3\right)\)

Cộng vế theo vế \(\left(1\right);\left(2\right);\left(3\right)\), ta có:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=2\)

AH
Akai Haruma
Giáo viên
10 tháng 2 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky ta có:

\((\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1})^2\leq \left(\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-1}{c}\right)(a+b+c)\)

\(\Leftrightarrow (\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1})^2\leq \left(3-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)(a+b+c)\)

\(\Leftrightarrow (\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1})^2\leq \left(3-2\right)(a+b+c)\)

\(\Leftrightarrow (\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1})^2\leq a+b+c\)

\(\Leftrightarrow \sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\leq \sqrt{a+b+c}\)

Ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c=\frac{3}{2}\)

2 tháng 8 2018

_ Chứng minh VT <2 .

Với a,b,c > 0, ta có:

\(a< a+b\Rightarrow\dfrac{a}{a+b}< 1=\dfrac{c}{c}\Rightarrow\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\) (1)

\(b< b+c\Rightarrow\dfrac{b}{b+c}< 1=\dfrac{a}{a}\Rightarrow\dfrac{b}{b+c}< \dfrac{a+b}{a+b+c}\) (2)

\(c< c+a\Rightarrow\dfrac{c}{c+a}< 1=\dfrac{b}{b}\Rightarrow\dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\) (3)

Từ (1) , (2) và (3), Cộng vế theo vế ta có:

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\)(*)

_Chứng minh VP > 2.

Theo BĐT Cô-si, ta có:

\(\sqrt{\dfrac{b+c}{a}.1}\le\left(\dfrac{b+c}{a}+1\right):2=\dfrac{b+c+a}{2a}\)

Do vậy : \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Tương tự:\(\sqrt{\dfrac{b}{a+c}}\ge\dfrac{2b}{a+b+c},\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng vế theo vế

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu ''='' xảy ra \(\left\{{}\begin{matrix}a=b+c\\b=a+c\\c=a+b\end{matrix}\right.\)

\(\Rightarrow a+b+c=0\) (trái với g/t a,b,c >0)

Vậy đẳng thức khong xảy ra dấu ''=''

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>2\) (**)

Từ (*) và (**) \(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)

17 tháng 8 2018

Trương Bảo Ngân Khó hiểu quá không bạn?

21 tháng 6 2017

làm rõ \(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)

\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)

\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\) (đúng)

21 tháng 6 2017

ok thỏa thuận rồi tui làm nửa sau thui nhé :D

Đặt \(a^2=x;b^2=y;c^2=z\) thì ta có:

\(VT=\sqrt{\dfrac{x}{x+y}}+\sqrt{\dfrac{y}{y+z}}+\sqrt{\dfrac{z}{x+z}}\)

Lại có: \(\sqrt{\dfrac{x}{x+y}}=\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)

Tương tự cộng theo vế rồi áp dụng BĐT C-S ta có:

\(VT^2\le2\left(x+y+z\right)\left[\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(y+z\right)\left(y+x\right)}+\dfrac{z}{\left(z+x\right)\left(z+y\right)}\right]\)

\(\Leftrightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

\(VP^2=\dfrac{9}{2}\) nên cần cm \(VT\le \frac{9}{2}\)

\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+yz+xz\right)\)

Can you continue