Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tổng Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0 Suy ra có ít nhất một trong 7 số là số chẵn |
là số chẵn
a, a(b+c)−b(a−c)a(b+c)−b(a−c)
=ab+ac−(ab−bc)=ab+ac−(ab−bc)
=ab+ac−ab+bc=ab+ac−ab+bc
=ac+bc=ac+bc
=(a+b)c=(a+b)c
b,(a+b)(a−b)(a+b)(a−b)
=(aa+ab)−(ab+bb)=(aa+ab)−(ab+bb)
=aa+ab−ab−bb
Lời giải:
Giả sử $(a^2+b^2, ab)>1$. Khi đó, gọi $p$ là ước nguyên tố lớn nhất của $(a^2+b^2,ab)$
$\Rightarrow a^2+b^2\vdots p; ab\vdots p$
Vì $ab\vdots p\Rightarrow a\vdots p$ hoặc $b\vdots p$
Nếu $a\vdots p$. Kết hợp $a^2+b^2\vdots p\Rightarrow b^2\vdots p$
$\Rightarrow b\vdots p$
$\Rightarrow p=ƯC(a,b)$ . Mà $(a,b)=1$ nên vô lý
Tương tự nếu $b\vdots p$
Vậy điều giả sử là sai. Tức là $(a^2+b^2, ab)=1$
a) Thay a = − 2 , b = 4 vào biểu thức ta được ( − 2 ) 2 + 2. ( − 2 ) .4 + 4 2 − 1 = 4 + ( − 16 ) + 16 − 1 = 3
b) Thay x = 4 vào biểu thức ta được 4. ( − 234 ) + ( − 4 ) .16 = ( − 4 ) .234 + ( − 4 ) .16 = ( − 4 ) . ( 234 + 16 ) = ( − 4 ) .250 = − 1000
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
Gọi d là \(ƯCLN\left(a,b\right)\)
\(\Rightarrow\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\)
\(a=dm,b=dn\)với \(m,n\inℕ,\left(m,n\right)=1\)
\(\Rightarrow\hept{\begin{cases}a^2+b^2=d^2\left(m^2+n^2\right)\\ab=d^2mn\end{cases}}\)
\(a^2+b^2⋮ab\)
\(\Rightarrow d^2\left(m^2+n^2\right)⋮d^2mn\)
\(\Rightarrow m^2+n^2⋮mn\)
Do \(\left(m,n\right)=1\)
\(\Rightarrow\hept{\begin{cases}m^2+n^2⋮m\\m^2+n^2⋮n\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n⋮m\\m⋮n\end{cases}}\)
\(\Rightarrow m=n\)
Mà \(\left(m,n\right)=1\)
\(\Rightarrow m=n=1\)
\(\Rightarrow P=\frac{a^2+b^2}{ab}=\frac{1+1}{1}=\frac{2}{1}=2\)
Vậy P=2