\(a^2-3ab+2b^2+a-b=a^2-2ab+b^2-5a+7b=0\)

Chúng tỏ rằng:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2020

Với a,b > = 0 và a + b = a2b2

Ta có:

\(VT=\sqrt{a+b+4\sqrt{a+b+2ab+1}}=\sqrt{a^2b^2+4\sqrt{a^2b^2+2ab+1}}\)

\(=\sqrt{a^2b^2+4\sqrt{\left(ab+1\right)^2}}=\sqrt{a^2b^2+4\left(ab+1\right)}\)

\(=\sqrt{a^2b^2+4ab+4}=\sqrt{\left(ab+2\right)^2}=ab+2=VP\)

=> đpcm

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

19 tháng 7 2017

có 1 cách mà xài SOS xấu lắm chơi ko :))

25 tháng 7 2017

tìm thấy rồi Tổng hợp kỹ thuật chứng minh bất đẳng thức-Tập 2: Luyện thi học sinh giỏi toán - Tổng hợp - Google Sách

30 tháng 4 2019

P=a2b+ab2-\(\frac{\left(a+b\right)^2-2ab}{6a^2b^2}\)=a2b+ab2-\(\frac{\left(4ab\right)^2-2ab}{6a^2b^2}\)=a2b+ab2-\(\frac{16a^2b^2}{6a^2b^2}\)+\(\frac{2ab}{6a^2b^2}\)

=a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)

Áp dụng Bất đẳng thức Cauchy cho 3 số dương, ta được:

P==a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)\(\ge\)3.\(\sqrt[3]{a^3b^3\frac{8}{3}}\)+\(\frac{1}{3ab}\)=\(\frac{6}{\sqrt[3]{3}}\).ab+\(\frac{1}{3ab}\)

Áp dụng Bất đẳng thức Cauchy cho 2 số dương, ta được:

P=\(\frac{6}{\sqrt[3]{3}}\).ab+\(\frac{1}{3ab}\)\(\ge\)2.\(\sqrt{\frac{6}{\sqrt[3]{3}}.ab.\frac{1}{3ab}}\)=\(\frac{2\sqrt{6}}{\sqrt[6]{3}}\)

Vậy MinP=\(\frac{2\sqrt{6}}{\sqrt[6]{3}}\)

30 tháng 4 2019

\(-\frac{8}{3}\)có phải là số không âm đâu mà áp dụng BĐT Cosi

6 tháng 7 2018

Có a3-3ab2=10=>(a3-3ab2)2=100(1)

Có b3-3a2b=5=>(b3-3a2b)2=25(2)

Cộng (1) và (2)

=>(a3-3ab2)2+(b3-3a2b)2=100+25

<=>a6-6a4b2+9a2b4+b6-6a2b4+9a2b4=125

<=>a6+3a2b4+3a4b2+b6=125

<=>(a2+b2)3=125

<=>a2+b2=5

vậy a2+b2=5