\(a-\sqrt{ab}-6b=0\). Tính giá trị của biểu thức: <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(a-\sqrt{ab}-6b=0\)

\(\Leftrightarrow a+2\sqrt{ab}-3\sqrt{ab}-6b=0\)

\(\Leftrightarrow\sqrt{a}\left(\sqrt{a}+2\sqrt{b}\right)-3\sqrt{b}\left(\sqrt{a}+2\sqrt{b}\right)=0\)

\(\Leftrightarrow\left(\sqrt{a}+2\sqrt{b}\right)\left(\sqrt{a}-3\sqrt{b}\right)=0\)

\(\Leftrightarrow\sqrt{a}-3\sqrt{b}=0\) ( Vì \(a,b>0\) )

\(\Leftrightarrow a=9b\)

\(P=\dfrac{a+b}{a+\sqrt{ab}+b}=\dfrac{9b+b}{9b+\sqrt{9b^2}+b}=\dfrac{10b}{13b}=\dfrac{10}{13}\)

24 tháng 5 2015

\(a-\sqrt{ab}-6b=0\Rightarrow a-3\sqrt{ab}+2\sqrt{ab}-6b=0\)

=> \(\sqrt{a}.\left(\sqrt{a}-3\sqrt{b}\right)+2\sqrt{b}.\left(\sqrt{a}-3\sqrt{b}\right)=0\)

=> \(\left(\sqrt{a}+2\sqrt{b}\right).\left(\sqrt{a}-3\sqrt{b}\right)=0\)=> \(\sqrt{a}-3\sqrt{b}=0\) vì a; b > 0 nên \(\sqrt{a}+2\sqrt{b}>0\)

<=> \(\sqrt{a}=3\sqrt{b}\Rightarrow a=9b\)

Vậy \(P=\frac{9b+b}{9b+\sqrt{9b^2}+b}=\frac{10b}{13b}=\frac{10}{13}\)

 

AH
Akai Haruma
Giáo viên
22 tháng 1 2018

Lời giải:

Ta có: \(\sqrt{a-c}+\sqrt{b-c}=\sqrt{a+b}\)

\(\Rightarrow (\sqrt{a-c}+\sqrt{b-c})^2=a+b\)

\(\Leftrightarrow a-c+b-c+2\sqrt{(a-c)(b-c)}=a+b\)

\(\Leftrightarrow \sqrt{(a-c)(b-c)}=c\)

Bình phương hai vế: \(c^2=(a-c)(b-c)\)

\(\Leftrightarrow ab=ac+bc(*)\)

----------------------------

Ta có: \(P=\frac{bc}{a^2}+\frac{ac}{b^2}-\frac{ab}{c^2}\)

\(P=\frac{(bc)^3+(ac)^3-(ab)^3}{(abc)^2}\)

Xét tử số kết hợp với $(*)$

\((bc)^3+(ac)^3-(ab)^3=(bc+ac)^3-3bc.ac(bc+ac)-(ab)^3\)

\(=(ab)^3-3bc.ac.ab-(ab)^3=-3(abc)^2\)

Do đó: \(P=\frac{-3(abc)^2}{(abc)^2}=-3\)

13 tháng 6 2016

Cách 1:

Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự với \(\sqrt{\frac{bc}{a+bc}},\sqrt{\frac{ca}{b+ca}}\)rồi cộng các vế lại với nhau ta sẽ có

\(P\le\frac{3}{2}\)

Dấu đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Vậy....

13 tháng 6 2016

Trả lời đi huhu

26 tháng 4 2020

Áp dụng BĐT Cauchy ta được \(2\sqrt{bc}\le b+c\)=> \(\frac{a^2}{a+\sqrt{bc}}\ge\frac{2a^2}{2a+b+c}\)

Áp dụng BĐT tương tự ta được đẳng thức

\(\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\ge\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+c+a}+\frac{2c^2}{2c+a+b}\)

Áp dụng BĐT Cauchy ta lại có

\(\frac{2a^2}{2a+b+c}+\frac{2a+b+c}{8}\ge a;\frac{2b^2}{2b+a+c}+\frac{2b+a+c}{8}\ge b;\frac{2c^2}{2c+a+b}+\frac{2c+a+b}{8}\ge c\)

Cộng theo vế ta được

\(\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+a+c}+\frac{2c^2}{2c+a+b}\ge\frac{3}{2}\)

Vậy MinP=\(\frac{3}{2}\)

26 tháng 4 2020

phần áp dụng BĐT lần 2 mình chưa hiều lắm