K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

Cho a, b N* ; a > 2 ; b . 2

Chứng tỏ rằng a + b < a * b

             Giải

Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0. 

Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b.

19 tháng 2 2019

Gỉa sử phân số \(\frac{b-a}{b}\)chưa tối giản. Như vậy b - a và b có ước chung là d > 1

Ta có b - a = dq1 (1) và b = dq2 (2) , trong đó q1 , q2  thuộc N và q2 > q1.

Từ (1) ; (2) suy ra a = d(q2 - q1 ) nghĩa là a cũng có ước là d.

Như vậy a và b có ước chung là d > 1 trái với giả thiết \(\frac{a}{b}\) là phân số tôi giản

Vậy nếu \(\frac{a}{b}\) tối giản thì \(\frac{b-a}{b}\) cũng tối giản 

23 tháng 11 2020

a,xét n chẵn hiển nhiên A ko chia hết cho 2

n lẻ thì n^2 lẻ n lẻ

->A lẻ -> A ko chia hết cho 2

b,n^2 có tận cùng là:0,1,4,5,6,9

->n^2+n có tận cùng:0,2,8

->n^2+n+1 có tận cùng:1,3,9  ko chia hết cho 5

11 tháng 10 2016

chan qua a!

ai kb voi mk ko

chan qua !

chuc bn hoc gioi!

nhae

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:
Nếu trong 2 số $a,b$ có ít nhất 1 số chẵn thì $ab\vdots 2$

$\Rightarrow ab(a+b)\vdots 2$.

Nếu $a,b$ đều lẻ thì $a+b$ chẵn.

$\Rightarrow ab(a+b)\vdots 2$

Từ 2 TH trên suy ra $ab(a+b)\vdots 2$ với $a,b$ là số tự nhiên.

12 tháng 10 2017

Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)(1)

Ta lại có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

=> \(a\left(a+b+c\right)< \left(a+c\right)\left(a+b\right)\)

<=> 0<bc( đúng)

CMTT: \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng lại ta được \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)(2)

Từ (1) và (2) => Tổng đó \(\notin Z\)

15 tháng 10 2017

hjcftgjc

13 tháng 9 2016

Vì a,b khác 0 và a,b > 2 => a có dạng là 2+m và b có dạng 2+n

Theo đề bài ra ta có:

2+m+2+n=(2+m)(2+n)

=> 4+m+n=4+2m+2n+mn

=> 4+(m+n)=4+2(m+n)+mn

Vì 4=4 nhưng 2(m+n)>(m+n)

=> a+b < ab             ĐPCM

1 tháng 9 2017

Vì a , b\(\ne\)0 và a , b > 2 \(\Rightarrow\) a có dạng là 2 + m , b là 2 + n.

Ta có : ( 2 + m ) + ( 2 + n )

\(\Rightarrow\) 4 + m + n = 4 + 2m + 2n + mn

\(\Rightarrow\)4 + ( m + n ) = 4 + 2 ( m + n ) + mn

Vì 4 = 4 nhưng 2 ( m + n ) > m + n

\(\Rightarrow\) a + b < ab \(\Rightarrow\) ( Đpcm )

5 tháng 2

Nếu n  = 2k ⇒ n2 + n + 1  không chia hết cho 2

Nếu n = 2k + 1  ⇒ n + 1 = 2k + 2  ⋮ 2 (1)

    n =   2k + 1  không chia hết cho 2 nên

⇒ n2 = (2k + 1) không chia hết cho 2 (2)

Kết hợp (1) và (2) ta có: A = n2+n +1 không chia hết cho 2 với ∀n\(\in\)