Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử phân số \(\frac{b-a}{b}\)chưa tối giản. Như vậy b - a và b có ước chung là d > 1
Ta có b - a = dq1 (1) và b = dq2 (2) , trong đó q1 , q2 thuộc N và q2 > q1.
Từ (1) ; (2) suy ra a = d(q2 - q1 ) nghĩa là a cũng có ước là d.
Như vậy a và b có ước chung là d > 1 trái với giả thiết \(\frac{a}{b}\) là phân số tôi giản
Vậy nếu \(\frac{a}{b}\) tối giản thì \(\frac{b-a}{b}\) cũng tối giản
a,xét n chẵn hiển nhiên A ko chia hết cho 2
n lẻ thì n^2 lẻ n lẻ
->A lẻ -> A ko chia hết cho 2
b,n^2 có tận cùng là:0,1,4,5,6,9
->n^2+n có tận cùng:0,2,8
->n^2+n+1 có tận cùng:1,3,9 ko chia hết cho 5
Lời giải:
Nếu trong 2 số $a,b$ có ít nhất 1 số chẵn thì $ab\vdots 2$
$\Rightarrow ab(a+b)\vdots 2$.
Nếu $a,b$ đều lẻ thì $a+b$ chẵn.
$\Rightarrow ab(a+b)\vdots 2$
Từ 2 TH trên suy ra $ab(a+b)\vdots 2$ với $a,b$ là số tự nhiên.
Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)(1)
Ta lại có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
=> \(a\left(a+b+c\right)< \left(a+c\right)\left(a+b\right)\)
<=> 0<bc( đúng)
CMTT: \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\), \(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng lại ta được \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)(2)
Từ (1) và (2) => Tổng đó \(\notin Z\)
Vì a,b khác 0 và a,b > 2 => a có dạng là 2+m và b có dạng 2+n
Theo đề bài ra ta có:
2+m+2+n=(2+m)(2+n)
=> 4+m+n=4+2m+2n+mn
=> 4+(m+n)=4+2(m+n)+mn
Vì 4=4 nhưng 2(m+n)>(m+n)
=> a+b < ab ĐPCM
Vì a , b\(\ne\)0 và a , b > 2 \(\Rightarrow\) a có dạng là 2 + m , b là 2 + n.
Ta có : ( 2 + m ) + ( 2 + n )
\(\Rightarrow\) 4 + m + n = 4 + 2m + 2n + mn
\(\Rightarrow\)4 + ( m + n ) = 4 + 2 ( m + n ) + mn
Vì 4 = 4 nhưng 2 ( m + n ) > m + n
\(\Rightarrow\) a + b < ab \(\Rightarrow\) ( Đpcm )
Nếu n = 2k ⇒ n2 + n + 1 không chia hết cho 2
Nếu n = 2k + 1 ⇒ n + 1 = 2k + 2 ⋮ 2 (1)
n = 2k + 1 không chia hết cho 2 nên
⇒ n2 = (2k + 1) không chia hết cho 2 (2)
Kết hợp (1) và (2) ta có: A = n2+n +1 không chia hết cho 2 với ∀n\(\in\)N
Cho a, b ∈N* ; a > 2 ; b . 2
Chứng tỏ rằng a + b < a * b
Giải
Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0.
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b.