Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: a)
b) Áp dụng Bđt Holder ta có:
\(\Rightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
\(\Rightarrow\frac{a^3+b^3+c^3}{3}\ge\frac{\left(a+b+c\right)^3}{27}=\left(\frac{a+b+c}{3}\right)^3\)(đpcm)
Dấu = khi a=b=c
Câu 2:
Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)ta có:
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+1+1}=\frac{4}{3}\)(Đpcm)
Dấu = khi \(a=b=\frac{1}{2}\)
Câu 3:
Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\left(a+b+c=1\right)\)(Đpcm)
Dấu = khi \(a=b=c=\frac{1}{3}\)
Câu 4: nghĩ sau
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
a, \(BĐT\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2-ab\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) (luôn đúng vì a,b>0)
Dấu "=" xảy ra <=> a=b
b, Áp dụng bđt câu a ta có: \(a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
=>\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự \(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)
Cộng 3 bđt vế theo vế ta được:
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\left(đpcm\right)\)
Dấu "=" xảy ra <=> a=b=c=1
Áp dụng bunhiacopsky ta có
(a3 + b3 + c3)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))\(\ge\)(\(\frac{\sqrt{a^3}}{\sqrt{a}}+\frac{\sqrt{b^3}}{\sqrt{b}}+\frac{\sqrt{c^3}}{\sqrt{c}}\))2 = (a + b + c)2
THƯA CHỊ BÀI NÀY LÀ SAO AK, E HỌC LỚP 5 ** BIK BÀI NÀY NHÉ ~_~ !!!!!!!!!!!
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0,\forall a,b\ge0\)
Áp dụng:
\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+1}=\frac{abc}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)
\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(b+c\right)+1}=\frac{abc}{bc\left(b+c\right)+abc}=\frac{a}{a+b+c}\)
\(\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(c+a\right)+1}=\frac{abc}{ca\left(c+a\right)+abc}=\frac{b}{a+b+c}\)
\(\Rightarrow VT\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=\frac{a+b+c}{a+b+c}=1\left(đpcm\right)\)